
  

252

  7  The Quantum-Mechanical 
Model of the Atom 
     Anyone who is not shocked by quantum mechanics has not understood it.     
—Neils Bohr (1885–1962)   
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        The thought experiment known as Schrödinger’s cat was intended to show that the strangeness of the quantum 
world does not transfer to the macroscopic world.  

T
HE EARLY PART OF THE TWENTIETH century brought changes that revolutionized 

how we think about physical reality, especially in the atomic realm. Before that time, all 

descriptions of the behavior of matter had been deterministic—the present set of 

conditions completely determining the future. Quantum mechanics changed that. This 

new theory suggested that for subatomic particles—electrons, neutrons, and protons—the present 

does NOT completely determine the future. For example, if you shoot one electron down a path and 

measure where it lands, a second electron shot down the same path under the same conditions will 

not necessarily follow the same course but instead will most likely land in a different place! 
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7.1  Schrödinger’s Cat      253

     7.1 Schrödinger’s Cat 
 Atoms and the particles that compose them are unimaginably small. Electrons have a 

mass of less than a trillionth of a trillionth of a gram, and a size so small that it is immea-

surable. Electrons are  small  in the absolute sense of the word—they are among the small-

est particles that make up matter. And yet, as we have seen, an atom’s electrons determine 

many of its chemical and physical properties. If we are to understand these properties, we 

must try to understand electrons. 

 In the early 20 th  century, scientists discovered that the  absolutely small  (or  quantum ) 

world of the electron behaves differently than the  large  (or  macroscopic ) world that we 

are used to observing.  Chief among these differences is the idea that, when unobserved, 

 absolutely small particles like electrons can simultaneously be in two different states at 
the same time . For example, through a process called radioactive decay (see  Chapter   19   ) 

an atom can emit small (that is,  absolutely  small) energetic particles from its nucleus. In 

the macroscopic world, something either emits an energetic particle or it doesn’t. In the 

quantum world, however, the unobserved atom can be in a state in which it is doing 

both—emitting the particle and not emitting the particle—simultaneously. At first, this seems 

absurd. The absurdity resolves itself, however, upon observation. When we set out to measure 

the emitted particle, the act of measurement actually forces the atom into one state or other.   

 Early 20 th  century physicists struggled with this idea. Austrian physicist Erwin 

Schrödinger, in an attempt to demonstrate that this quantum strangeness could never transfer 

itself to the macroscopic world, published a paper in 1935 that contained a thought experi-

ment about a cat, now known as Schrödinger’s cat. In the thought experiment, the cat is put 

into a steel chamber that contains radioactive atoms such as the one described in the previous 

paragraph. The chamber is equipped with a mechanism that, upon the emission of an ener-

getic particle by one of the radioactive atoms, causes a hammer to break a flask of hydrocy-

anic acid, a poison. If the flask breaks, the poison is released and the cat dies.  

 Now here comes the absurdity: if the steel chamber is closed, the whole system remains 

unobserved, and the radioactive atom is in a state in which it has emitted the particle and not 

emitted the particle (with equal probability). Therefore the cat is both dead and undead. 

Schrödinger put it this way: “[the steel chamber would have]  in it the living and dead cat 
(pardon the expression) mixed or smeared out in equal parts.”   When the chamber is opened, 

the act of observation forces the entire system into one state or the other:  the cat is either dead 

or alive, not both. However, while unobserved, the cat is both dead and alive. The absurdity of 

the both dead and not dead cat in Schrödinger’s thought experiment was meant to demon-

strate how quantum strangeness does not transfer to the macroscopic world.  

 In this chapter, we examine the  quantum-mechanical model  of the atom, a model that 

explains the strange behavior of electrons. In particular, we focus on how the model describes 

electrons as they exist within atoms, and how those electrons determine the chemical and 

physical properties of elements. We have already learned much about those properties. We 

know, for example, that some elements are metals and that others are nonmetals. We know 

Quantum-mechanical theory was developed by several unusually gifted scientists 

including Albert Einstein, Neils Bohr, Louis de Broglie, Max Planck, Werner Heisenberg, 

P. A. M. Dirac, and Erwin Schrödinger. These scientists did not necessarily feel 

comfortable with their own theory. Bohr said, “Anyone who is not shocked by quantum 

mechanics has not understood it.” Schrödinger wrote, “I don’t like it, and I’m sorry I ever 

had anything to do with it.” Albert Einstein disbelieved the very theory he helped create, 

stating, “God does not play dice with the universe.” In fact, Einstein attempted to disprove 

quantum mechanics—without success—until he died. However, quantum mechanics was 

able to account for fundamental observations, including the very stability of atoms, which 

could not be understood within the framework of classical physics. Today, quantum 

mechanics forms the foundation of chemistry—explaining, for example, the periodic table 

and the behavior of the elements in chemical bonding—as well as providing the practical 

basis for lasers, computers, and countless other applications.  

5090X_07_ch7_p252-285.indd   2535090X_07_ch7_p252-285.indd   253 11/10/11   10:26 AM11/10/11   10:26 AM



254      Chapter 7  The Quantum-Mechanical Model of the Atom

that the noble gases are chemically inert and that the alkali metals are chemically reactive. We 

know that sodium tends to form  1+  ions and that fluorine tends to form  1-  ions. But we 

have not explored  why . The quantum-mechanical model explains why. In doing so, it explains 

the modern periodic table and provides the basis for our understanding of chemical bonding.  

  7.2 The Nature of Light 
 Before we explore electrons and their behavior within the atom, we must understand a 

few things about light. As quantum mechanics developed, light was (surprisingly) found 

to have many characteristics in common with electrons. Chief among these is the  wave–
particle duality  of light. Certain properties of light are best described by thinking of it as 

a wave, while other properties are best described by thinking of it as a particle. In this 

chapter, we first explore the wave behavior of light, and then its particle behavior. We 

then turn to electrons to see how they display the same wave–particle duality. 

  The Wave Nature of Light 
 Light is  electromagnetic radiation , a type of energy embodied in oscillating electric and 

magnetic fields. A  magnetic field  is a region of space where a magnetic particle experiences a 

force (think of the space around a magnet). An  electric field  is a region of space where an 

electrically charged particle experiences a force. Electromagnetic radiation can be described 

as a wave composed of oscillating, mutually perpendicular electric and magnetic fields propa-

gating through space, as shown in  Figure   7.1   ▼. In a vacuum, these waves move at a constant 

speed of 3.00 * 108 m>s (186,000 mi>s)—fast enough to circle Earth in one-seventh of a 

second. This great speed explains the delay between the moment when you see a firework in 

the sky and the moment when you hear the sound of its explosion. The light from the explod-

ing firework reaches your eye almost instantaneously. The sound, traveling much more slowly  

(340 m>s), takes longer. The same thing happens in a thunderstorm—you see the flash of the 

lightning immediately, but the sound of the thunder takes a few seconds to reach you.  
 An electromagnetic wave, like all waves, can be characterized by its  amplitude  and 

its  wavelength . In the graphical representation shown below, the  amplitude  of the wave 

is the vertical height of a crest (or depth of a trough). The amplitude of the electric and 

magnetic field waves in light is related to the  intensity  or brightness of the light—the 

greater the amplitude, the greater the intensity. The  wavelength (L)  of the wave is the 

distance in space between adjacent crests (or any two analogous points) and is measured 

in units of distance such as the meter, micrometer, or nanometer.    

 

Wavelength (λ)

Amplitude

       

Electric field
component

Electromagnetic Radiation

Magnetic field
component

Direction
of travel

 ▶ FIGURE 7.1   Electromagnetic 

Radiation          Electromagnetic radiation 

can be described as a wave composed 

of oscillating electric and  magnetic 

fields. The fields oscillate in 

perpendicular planes.   

 The symbol l is the Greek letter 
lambda, pronounced “lamb-duh.” 
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7.2  The Nature of Light      255

 Wavelength and amplitude are both related to the amount of energy carried by a wave. 

Imagine trying to swim out from a shore that is being pounded by waves. Greater ampli-

tude (higher waves) or shorter wavelength (more closely spaced, and thus steeper, waves) 

make the swim more difficult. Notice also that amplitude and wavelength can vary inde-

pendently of one another, as shown in  Figure   7.2   ▲. A wave can have a large amplitude and 

a long wavelength, or a small amplitude and a short wavelength. The most energetic 

waves have large amplitudes and short wavelengths.  
 Like all waves, light is also characterized by its  frequency (N) , the number of 

cycles (or wave crests) that pass through a stationary point in a given period of time. 

The units of frequency are cycles per second (cycle/s) or simply s-1. An equivalent 

unit of frequency is the hertz (Hz), defined as 1 cycle/s. The frequency of a wave is 

directly proportional to the speed at which the wave is traveling—the faster the wave, 

the more crests will pass a fixed location per unit time. Frequency is also  inversely  

proportional to the wavelength (l)—the farther apart the crests, the fewer that pass a 

fixed location per unit time. For light, therefore, we write      

    n =
c

l
    [7.1]

 where the speed of light,  c , and the wavelength, l, are expressed using the same unit of 

distance. Therefore, wavelength and frequency represent different ways of specifying the 

same information—if we know one, we can readily calculate the other. 

 For  visible light —light that can be seen by the human eye—wavelength (or, 

alternatively, frequency) determines color. White light, as produced by the sun or by 

a lightbulb, contains a spectrum of wavelengths and therefore a spectrum of colors. 

We see these colors—red, orange, yellow, green, blue, indigo, and violet—in a rain-

bow or when white light is passed through a prism ( Figure   7.3   ▶). Red light, with a 

wavelength of about 750 nanometers (nm), has the longest wavelength of visible 

light; violet light, with a wavelength of about 400 nm, has the shortest. The presence 

of a variety of wavelengths in white light is responsible for the colors that we per-

ceive. When a substance absorbs some colors while reflecting others, it appears col-

ored. For example, a red shirt appears red because it reflects predominantly red light 

while absorbing most other colors ( Figure   7.4   ▶). Our eyes see only the reflected light, 

making the shirt appear red.      

 The symbol n is the Greek letter nu, 
pronounced “noo.” 

▲  FIGURE 7.3   Components of White 

Light          White light can be decomposed 

into its constituent colors, each with a 

different wavelength, by passing it 

through a prism. The array of colors 

makes up the spectrum of visible light.   

 ▲ FIGURE 7.4   The Color of an 

Object          A red shirt is red is because it 

reflects predominantly red light while 

absorbing most other colors.   

 nano = 10-9 

λA

λB

λC

Different wavelengths,
different colors

Different amplitudes,
different brightness

 ▲ FIGURE 7.2   Wavelength and Amplitude          Wavelength and amplitude are independent 

properties. The wavelength of light determines its color. The amplitude, or intensity, 

determines its brightness.   
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Wavelength,
λ (m) 105 103

AM

10 10–1 10–3 10–5 10–7 10–9 10–11 10–13 10–15

Frequency,
ν (Hz) 104 106 108 1010 1012 1014 1016 1018 1020 1022 1024

Low
energy

The Electromagnetic Spectrum

High
energy

Radio Microwave Infrared Ultraviolet X-ray Gamma ray

Cell

Visible light

FMTV

Wavelength, λ (nm)Red Violet
750 700 650 600 550 500 450 400

 ▲ FIGURE 7.5   The Electromagnetic Spectrum          The right side of the spectrum consists of high-

energy, high-frequency, short-wavelength radiation. The left side consists of low-energy, low-

frequency, long-wavelength radiation. Visible light constitutes a small segment in the middle.   

  The Electromagnetic Spectrum 
 Visible light makes up only a tiny portion of the entire  electromagnetic spectrum , which 

includes all known wavelengths of electromagnetic radiation.  Figure   7.5   ▼ shows the main 

regions of the electromagnetic spectrum, ranging in wavelength from  10-15 m (gamma 

rays) to  105 m (radio waves).  
 As we noted previously, short-wavelength light inherently has greater energy than 

long-wavelength light. Therefore, the most energetic forms of electromagnetic radiation 

have the shortest wavelengths. The form of electromagnetic radiation with the shortest 

wavelength is the  gamma (G) ray . Gamma rays are produced by the sun, other stars, and 

certain unstable atomic nuclei on Earth. Human exposure to gamma rays is dangerous 

because the high energy of gamma rays can damage biological molecules. 

 Next on the electromagnetic spectrum, with longer wavelengths than gamma rays, 

are  X-rays , familiar to us from their medical use. X-rays pass through many substances 

that block visible light and are therefore used to image bones and internal organs. Like 

gamma rays, X-rays are sufficiently energetic to damage biological molecules. While 

several yearly exposures to X-rays are relatively harmless, excessive exposure to X-rays 

increases cancer risk. 

 Sandwiched between X-rays and visible light in the electromagnetic spectrum is  

ultraviolet (UV) radiation , most familiar to us as the component of sunlight that produces a 

  EXAMPLE 7.1 Wavelength and Frequency 

 Calculate the wavelength (in nm) of the red light emitted by a barcode scanner that has 

a frequency of  4.62 * 1014 s-1. 

  SOLUTION 

 You are given the frequency of the light 

and asked to find its wavelength. Use 

Equation 7.1, which relates frequency 

to wavelength. You can convert the 

wavelength from meters to nanometers 

by using the conversion factor between 

the two (1 nm = 10-9 m). 

  FOR PRACTICE 7.1 

 A laser used to dazzle the audience in a rock concert emits green light with a wave-

length of 515 nm. Calculate the frequency of the light.    

   n =
c

l
   

   l=
c

n
=

3.00 * 108 m> s

4.62 * 1014 1> s
   

    = 6.49 * 10-7 m   

    = 6.49 * 10-7 m *

1 nm

10-9 m
= 649 nm    
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7.2  The Nature of Light      257

sunburn or suntan. While not as energetic as gamma rays or X-rays, ultraviolet light still 

 carries enough energy to damage biological molecules. Excessive exposure to ultraviolet light 

increases the risk of skin cancer and cataracts and causes premature wrinkling of the skin. 

 Next on the spectrum is  visible light , ranging from violet (shorter wavelength, higher 

energy) to red (longer wavelength, lower energy). Visible light—as long as the intensity is 

not too high—does not carry enough energy to damage biological molecules. It does, how-

ever, cause certain molecules in our eyes to change their shape, sending a signal to our 

brains that results in vision. Beyond visible light lies  infrared (IR) radiation . The heat you 

feel when you place your hand near a hot object is infrared radiation. All warm objects, 

including human bodies, emit infrared light. Although infrared light is invisible to our eyes, 

infrared sensors can detect it and are used in night vision technology to “see” in the dark. 

 At longer wavelengths still, are  microwaves , used for radar and in microwave ovens. 

Although microwave radiation has longer wavelengths and therefore lower energies than 

visible or infrared light, it is efficiently absorbed by water and can therefore heat sub-

stances that contain water. The longest wavelengths are those of  radio waves , which are 

used to transmit the signals responsible for AM and FM radio, cellular telephones, televi-

sion, and other forms of communication.    

  Interference and Diffraction 
 Waves, including electromagnetic waves, interact with each other in a characteristic way 

called  interference : they can cancel each other out or build each other up, depending on 

their alignment upon interaction. For example, if waves of equal amplitude from two 

sources are  in phase  when they interact—that is, they align with overlapping crests—a 

wave with twice the amplitude results. This is called  constructive interference .   

 

Waves
in phase

Constructive
interference

         

 On the other hand, if the waves are completely  out of phase —that is, they align so that the 

crest from one source overlaps the trough from the other source—the waves cancel by 

 destructive interference . 

 

Waves out
of phase

Destructive
interference

       

 When a wave encounters an obstacle or a slit that is comparable in size to its wave-

length, it bends around it—a phenomenon called  diffraction  ( Figure   7.6   ▶). The diffraction 

of light through two slits separated by a distance comparable to the wavelength of the light 

results in an  interference pattern , as shown in  Figure   7.7   ▶. Each slit acts as a new wave 

source, and the two new waves interfere with each other. The resulting pattern consists of a 

series of bright and dark lines that can be viewed on a screen (or recorded on a film) placed 

at a short distance behind the slits. At the center of the screen, the two waves travel equal 

distances and interfere constructively to produce a bright line. However, a small distance 

away from the center in either direction, the two waves travel slightly different distances, so 

that they are out of phase. At the point where the difference in distance is one-half of a 

wavelength, the interference is destructive and a dark line appears on the screen. Moving a 

bit further away from the center produces constructive interference again because the dif-

ference between the paths is one whole wavelength. The end result is the interference pat-

tern shown. Notice that interference results from the ability of a wave to diffract through the 

two slits—this is an inherent property of waves.    

        ▲ Suntans and sunburns are produced 

by ultraviolet light from the sun.  

        ▲ Warm objects emit infrared light, 

which is invisible to the eye but can be 

captured on film or by detectors to 

produce an infrared photograph.  

 (© Sierra Pacifi c Innovations. All rights reserved. 

SPI CORP, www.x20.org.) 

        ▲ When a reflected wave meets an 

incoming wave near the shore, the 

two waves interfere constructively for 

an instant, producing a large 

amplitude spike.  

 Understanding interference in waves 
is critical to understanding the wave 
nature of the electron, as we will 
soon see. 
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Destructive interference: 
Path lengths differ by λ/2.

Constructive interference: 
Equal path lengths

Waves out of phase
make dark spot

Waves in phase
make bright spot

Slits

Diffraction
pattern

Film
(front view)

Film
(side view)

Light
source

Interference from Two Slits

+

+

▲  FIGURE 7.7   Interference from Two Slits          When a beam of light passes through two small slits, 

the two resulting waves interfere with each  other. Whether the interference is constructive or 

destructive at any given point depends on the difference in the path lengths traveled by the waves. 

The resulting interference pattern can be viewed as a series of bright and dark lines on a screen.   

Wave
Diffraction

Particle
Behavior

Barrier
with slit

Particle beam

Wave crests

Diffracted wave

 ▶ FIGURE 7.6   Diffraction          This view 

of waves from above shows how they 

are bent, or diffracted, when they 

encounter an obstacle or slit with a size 

comparable to their wavelength. When 

a wave passes through a small 

opening, it spreads out. Particles, by 

contrast, do not diffract; they simply 

pass through the opening.   

  The Particle Nature of Light 
 Prior to the early 1900s, and especially after the discovery of the diffraction of light, light 

was thought to be purely a wave phenomenon. Its behavior was described adequately by 

classical electromagnetic theory, which treated the electric and magnetic fields that consti-

tute light as waves propagating through space. However, a number of discoveries brought 

the classical view into question. Chief among those for light was the  photoelectric effect .    
 The  photoelectric effect  was the observation that many metals eject electrons when 

light shines upon them, as shown in  Figure   7.8   ▶. The light dislodges an electron from the 

metal when it shines on the metal, much like an ocean wave might dislodge a rock from a 

cliff when it breaks on a cliff. Classical electromagnetic theory attributed this effect to the 

 The term  classical , as in classical 
electromagnetic theory or classical 
mechanics, refers to descriptions of 
matter and energy before the advent of 
quantum mechanics. 
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7.2  The Nature of Light      259

transfer of energy from the light to the electron in the metal, dislodging the electron. In this 

description, changing either the wavelength (color) or the amplitude (intensity) of the light 

should affect the ejection of electrons (just as changing the wavelength or intensity of the 

ocean wave would affect the dislodging of rocks from the cliff). In other words, according 

to the classical description, the rate at which electrons were ejected from a metal due to the 

photoelectric effect could be increased by using either light of shorter wavelength or light 

of higher intensity (brighter light). If a dim light were used, the classical description pre-

dicted that there would be a  lag time  between the initial shining of the light and the subse-

quent ejection of an electron. The lag time was the minimum amount of time required for 

the dim light to transfer sufficient energy to the electron to dislodge it (much as there would 

be a lag time for small waves to finally dislodge a rock from a cliff).  
 However, when observed in the laboratory, it was found that high-frequency, low-

intensity light produced electrons without the predicted lag time. Furthermore, experiments 

showed that the light used to eject electrons in the photoelectric effect had a  threshold 
frequency , below which no electrons were ejected from the metal, no matter how long or how 

brightly the light shone on the metal. In other words, low-frequency (long-wavelength) light 

would not eject electrons from a metal regardless of its intensity or its duration. But high-

frequency (short-wavelength) light would eject electrons, even if its intensity were low.  This is 
like observing that long wavelength waves crashing on a cliff would not dislodge rocks even if 
their amplitude (wave height) was large, but that short wavelength waves crashing on the 
same cliff would dislodge rocks even if their amplitude was small.    Figure   7.9   ▼ is a graph of the 

+ –

Positive
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source

Metal surface
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Metal
surface

Evacuated
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Light
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electrons

(a) (b)

The Photoelectric Effect
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▲  FIGURE 7.8   The Photoelectric Effect           (a)  When sufficiently energetic light shines on a metal 

surface, electrons are emitted.  (b)  The emitted electrons can be measured as an electrical current.   
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 ◀ FIGURE 7.9   The Photoelectric 

Effect          A plot of the electron ejection 

rate versus frequency of light for the 

photoelectric effect. Electrons are only 

ejected when the energy of a photon 

exceeds the energy with which an 

electron is held to the metal. The 

frequency at which this occurs is 

called the  threshold frequency.    
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260      Chapter 7  The Quantum-Mechanical Model of the Atom

  EXAMPLE 7.2 Photon Energy 

 A nitrogen gas laser pulse with a wavelength of 337 nm contains 3.83 mJ of energy. How many photons does it contain? 

  SORT  You are given the wavelength and total energy of a light 

pulse and asked to find the number of photons it contains. 

  GIVEN   Epulse = 3.83 mJ 

 l = 337 nm 

  FIND  number of photons 

  STRATEGIZE  In the first part of the conceptual plan, calculate 

the energy of an individual photon from its wavelength. 

 In the second part, divide the total energy of the pulse by the 

energy of a photon to determine the number of photons in the 

pulse. 

  CONCEPTUAL PLAN  

 

Ephotonλ
hc

E =
λ        

 
Epulse

Ephoton
= number of photons 

  RELATIONSHIPS USED   E = hc>l (Equation 7.3) 

  SOLVE  To execute the first part of the conceptual plan, convert 

the wavelength to meters and substitute it into the equation to 

calculate the energy of a 337-nm photon. 

 To execute the second part of the conceptual plan, convert the 

energy of the pulse from mJ to J. Then divide the energy of 

the pulse by the energy of a photon to obtain the number of 

photons. 

  SOLUTION  

 l = 337  nm *

10-9 m

1  nm 
= 3.37 * 10-7 m 

  Ephoton =
hc

l
=

(6.626 * 10-34 J #  s )a3.00 * 108 
 m  

 s 
b

3.37 * 10-7  m 
 

  = 5.8985 *  10-19 J  

 3.83  mJ *

10-3 J

1  mJ
= 3.83 * 10-3 J 

  number of photons =
Epulse

Ephoton
=

3.83 * 10-3  J 

5.8985 * 10-19  J
 

  = 6.49 * 1015 photons  

  FOR PRACTICE 7.2  

 A 100-watt lightbulb radiates energy at a rate of  100 J>s. (The watt, a unit of power, or energy over time, is defined as 1 J>s.) If 
all of the light emitted has a wavelength of 525 nm, how many photons are emitted per second? (Assume three significant 

figures in this calculation.) 

  FOR MORE PRACTICE 7.2  

 The energy required to dislodge electrons from sodium metal via the photoelectric effect is 275 kJ>mol. What wavelength 

(in nm) of light has sufficient energy per photon to dislodge an electron from the surface of sodium? 

rate of electron ejection from the metal versus the frequency of light used. Notice that increas-

ing the intensity of the light does not change the threshold frequency. What could explain this 

odd behavior?  
 In 1905, Albert Einstein proposed a bold explanation of this observation:  light energy 

must come in packets . In other words, light was  not  like ocean waves, but more like par-

ticles. According to Einstein, the amount of energy ( E ) in a light packet depends on its 

frequency (n) according to the equation:       

    E = hn     [7.2]

 where  h , called  Planck’s constant , has the value  h = 6.626 * 10-34 J # s. A  packet  of 

light is called a  photon  or a  quantum  of light. Since  n = c>l, the energy of a photon 

can also be expressed in terms of wavelength as follows:    

    E =
hc

l
 [7.3]   

 Unlike classical electromagnetic theory, in which light was viewed purely as a wave 

whose intensity was  continuously variable , Einstein suggested that light was  lumpy . 

From this perspective, a beam of light is  not  a wave propagating through space, but a 

shower of particles, each with energy hn. 

 Einstein was not the first to suggest 
that energy was quantized. Max Planck 
used the idea in 1900 to account for 
certain characteristics of radiation 
from hot bodies. However, he did not 
suggest that light actually traveled in 
discrete packets. 

 The energy of a photon is directly 
proportional to its frequency. 

 The energy of a photon is inversely 
proportional to its wavelength. 
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  EXAMPLE 7.3 Wavelength, Energy, and Frequency 

 Arrange these three types of electromagnetic radiation—visible light, X-rays, and 

microwaves—in order of increasing: 

   (a)  wavelength    (b)  frequency    (c)  energy per photon 

  SOLUTION  

 Examine  Figure   7.5    and note that X-rays have 

the shortest wavelength, followed by visible 

light and then microwaves. 

  (a)  wavelength 

 X-rays 6 visible 6 microwaves 

 Since frequency and wavelength are inversely 

proportional—the longer the wavelength the 

shorter the frequency—the ordering with 

respect to frequency is the reverse order with 

respect to wavelength. 

  (b)  frequency 

 microwaves 6 visible 6 X-rays 

 Energy per photon decreases with increasing 

wavelength, but increases with increasing fre-

quency; therefore, the ordering with respect to 

energy per photon is the same as for frequency. 

  (c)  energy per photon 

 microwaves 6 visible 6 X-rays 

  FOR PRACTICE 7.3  

 Arrange these colors of visible light—green, red, and blue—in order of increasing: 

  (a)  wavelength    (b)  frequency    (c)  energy per photon 

 Einstein’s idea that light was  quantized  elegantly explains the photoelectric effect. 

The emission of electrons from the metal depends on whether or not a single photon has 

sufficient energy (as given by hn) to dislodge a single electron. For an electron bound to 

the metal with binding energy f, the threshold frequency is reached when the energy of 

the photon is equal to f.    

 

Threshold frequency condition

Energy of
photon

Binding energy of
emitted electron

hν =  ϕ 

       

 Low-frequency light will not eject electrons because no single photon has the minimum 

energy necessary to dislodge the electron. Increasing the  intensity  of low-frequency light 

simply increases the number of low-energy photons, but does not produce any single 

photon with greater energy. In contrast, increasing the  frequency  of the light, even at low 

intensity, increases the energy of each photon, allowing the photons to dislodge electrons 

with no lag time. 

 As the frequency of the light is increased past the threshold frequency, the excess 

energy of the photon (beyond what is needed to dislodge the electron) is transferred to the 

electron in the form of kinetic energy. The kinetic energy (KE) of the ejected electron, 

therefore, is the difference between the energy of the photon (hn) and the binding energy 

of the electron, as given by the equation 

   KE = hv - f   

 Although the quantization of light explained the photoelectric effect, the wave expla-

nation of light continued to have explanatory power as well, depending on the circum-

stances of the particular observation. So the principle that slowly emerged (albeit with 

some measure of resistance) is what we now call the  wave–particle duality of light . 
Sometimes light appears to behave like a wave, at other times like a particle. Which 

behavior you observe depends on the particular experiment performed.   

 The symbol f is the Greek letter phi, 
pronounced “fee.” 
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262      Chapter 7  The Quantum-Mechanical Model of the Atom

  Conceptual Connection 7.1   The Photoelectric Effect 

 Light of three different wavelengths—325 nm, 455 nm, and 632 nm—was shone on a metal 

surface. The observations for each wavelength, labeled A, B, and C, were as follows: 

   Observation A: No photoelectrons were observed.  

  Observation B: Photoelectrons with a kinetic energy of 155 kJ>mol were observed.  

  Observation C: Photoelectrons with a kinetic energy of 51 kJ>mol were observed.  

  Which observation corresponds to which wavelength of light?      

  7.3 Atomic Spectroscopy and the Bohr Model 
 The discovery of the particle nature of light began to break down the division that 

existed in nineteenth-century physics between electromagnetic radiation, which was 

thought of as a wave phenomenon, and the small particles (protons, neutrons, and elec-

trons) that compose atoms, which were thought to follow Newton’s laws of motion 

(see Section 7.4). Just as the photoelectric effect suggested the particle nature of light, 

so certain observations of atoms began to suggest a wave nature for particles. The most 

important of these came from  atomic spectroscopy , the study of the electromagnetic 

radiation absorbed and emitted by atoms. 

 When an atom absorbs energy—in the form of heat, light, or electricity—it often 

reemits that energy as light. For example, a neon sign is composed of one or more 

glass tubes filled with neon gas. When an electric current is passed through the tube, 

the neon atoms absorb some of the electrical energy and reemit it as the familiar red 

light of a neon sign. If the atoms in the tube are not neon atoms but those of a differ-

ent gas, the emitted light is a different color. Atoms of each element emit light of a 

characteristic color. Mercury atoms, for example, emit light that appears blue, helium 

atoms emit light that appears violet, and hydrogen atoms emit light that appears red-

dish ( Figure   7.10   ◀).      
 Closer investigation of the light emitted by atoms reveals that it contains several 

distinct wavelengths. Just as the white light from a lightbulb can be separated into its 

constituent wavelengths by passing it through a prism, so can the light emitted by an ele-

ment when it is heated, as shown in  Figure   7.11   ▶. The result is a series of bright lines 

called an  emission spectrum . The emission spectrum of a particular element is always 

the same—it consists of the same bright lines at the same characteristic wavelengths—

and can be used to identify the element. For example, light arriving from a distant star 

contains the emission spectra of the elements that compose the star. Analysis of the light 

allows us to identify the elements present in the star.  
 Notice the differences between a white light spectrum and the emission spectra 

of hydrogen, helium, and barium. The white light spectrum is  continuous ; there are 

no sudden interruptions in the intensity of the light as a function of wavelength—it 

consists of light of all wavelengths. The emission spectra of hydrogen, helium, and 

barium, however, are not continuous—they consist of bright lines at specific wave-

lengths, with complete darkness in between. That is, only certain discrete wave-

lengths of light are present. Classical physics could not explain why these spectra 

consisted of discrete lines. In fact, according to classical physics, an atom composed 

of an electron orbiting a nucleus should emit a continuous white light spectrum. Even 

more problematic, the electron should lose energy as it emits the light, and spiral into 

the nucleus. 

 Johannes Rydberg, a Swedish mathematician, analyzed many atomic spectra and 

developed an equation (shown in the margin) that predicted the wavelengths of the hydro-

gen emission spectrum. However, his equation gave little insight into  why  atomic spectra 

were discrete,  why  atoms were stable, or  why  his equation worked.    
 The Danish physicist Neils Bohr (1885–1962) attempted to develop a model for 

the atom that explained atomic spectra. In his model, electrons travel around the 

nucleus in circular orbits (similar to those of the planets around the sun). However, in 

        ▲ The familiar red light from a neon 

sign is emitted by neon atoms that 

have absorbed electrical energy, which 

they reemit as visible radiation.  

 ▲ FIGURE 7.10   Mercury, Helium, and 

Hydrogen          Each element emits a 

characteristic color.   

 Remember that the color of visible light 
is determined by its wavelength. 

 The Rydberg equation is 
1>l = R (1>m2

- 1>n 2), where  R  is 
the Rydberg constant (1.097 * 107 m-1) 
and   m   and  n  are integers. 
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7.3  Atomic Spectroscopy and the Bohr Model      263

contrast to planetary orbits—which can theoretically exist at any distance from the 

sun—Bohr’s orbits could exist only at specific, fixed distances from the nucleus. The 

energy of each Bohr orbit was also fixed, or  quantized . Bohr called these orbits 

 stationary states  and suggested that, although they obeyed the laws of classical 

mechanics, they also possessed “a peculiar, mechanically unexplainable, stability.” 

We now know that the stationary states were really manifestations of the wave nature 

of the electron, which we expand upon shortly. Bohr further proposed that, in contra-

diction to classical electromagnetic theory, no radiation was emitted by an electron 

orbiting the nucleus in a stationary state. It was only when an electron jumped, or 

made a  transition , from one stationary state to another that radiation was emitted or 

absorbed ( Figure   7.12   ▶).  
 The transitions between stationary states in a hydrogen atom are quite unlike any 

transitions that you might imagine in the macroscopic world. The electron is  never 
observed   between states , only in one state or the next—the transition between states is 

instantaneous. The emission spectrum of an atom consists of discrete lines because the 

states exist only at specific, fixed energies. The energy of the photon created when an 

electron makes a transition from one stationary state to another is the energy difference 

between the two stationary states. Transitions between stationary states that are closer 

together, therefore, produce light of lower energy (longer wavelength) than transitions 

between stationary states that are farther apart. 

 In spite of its initial success in explaining the line spectrum of hydrogen (including 

the correct wavelengths), the Bohr model left many unanswered questions. It did, 

Hydrogen
lamp

Hydrogen
spectrum

Photographic
film

Helium spectrum

Barium spectrum

White light spectrum

Slit

Prism separates
component wavelengths 

Emission Spectra

(a)

(b)

 ▲ FIGURE 7.11   Emission Spectra           (a)  The light emitted from a hydrogen, helium, or barium 

lamp consists of specific wavelengths, which can be separated by passing the light through a prism. 

 (b)  The resulting bright lines constitute an emission spectrum characteristic of the element that 

produced it.   
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264      Chapter 7  The Quantum-Mechanical Model of the Atom

however, serve as an intermediate model between a classical view of the electron and a 

fully quantum-mechanical view, and therefore has great historical and conceptual impor-

tance. Nonetheless, it was ultimately replaced by a more complete quantum-mechanical 

theory that fully incorporated the wave nature of the electron.  

  7.4 The Wave Nature of Matter: the de Broglie 
Wavelength, the Uncertainty Principle, and 
Indeterminacy 
 The heart of the quantum-mechanical theory that replaced Bohr’s model is the wave 

nature of the electron, first proposed by Louis de Broglie (1892–1987) in 1924 and con-

firmed by experiments in 1927. It seemed incredible at the time, but electrons—which 

were thought of as particles and known to have mass—also have a wave nature. The wave 

nature of the electron is seen most clearly in its diffraction. If an electron beam is aimed 

at two closely spaced slits, and a series (or array) of detectors is arranged to detect the 

electrons after they pass through the slits, an interference pattern similar to that observed 

for light is recorded behind the slits ( Figure   7.13a   ▶). The detectors at the center of the 

array (midway between the two slits) detect a large number of electrons—exactly the 

opposite of what you would expect for particles ( Figure   7.13b   ▶). Moving outward from 

this center spot, the detectors alternately detect small numbers of electrons and then large 

numbers again and so on, forming an interference pattern characteristic of waves.         
 It is critical to understand that the interference pattern described here is  not caused by 

pairs of electrons interfering with each other, but rather by single electrons interfering 
with themselves . If the electron source is turned down to a very low level, so that electrons 

come out only one at a time,  the interference pattern remains . In other words, we can 

design an experiment in which electrons come out of the source singly. We can then record 

where each electron strikes the detector after it has passed through the slits. If we record 

the positions of thousands of electrons over a long period of time, we find the same inter-

ference pattern shown in  Figure   7.13(a)   . This leads us to an important conclusion:  The 
wave nature of the electron is an inherent property of individual electrons . Recall from 

Section 7.1 that unobserved electrons can simultaneously occupy two different states. In 

this case, the unobserved electron goes through both slits—it exists in two states 

simultaneously, just like Schrödinger’s cat—and interferes with itself. As it turns out, 

this wave nature is what explains the existence of stationary states (in the Bohr model) 

 The first evidence of electron wave 
properties was provided by the 
Davisson-Germer experiment of 1927, in 
which electrons were observed to 
undergo diffraction by a metal crystal. 

 For interference to occur, the spacing 
of the slits has to be on the order of 
atomic dimensions. 

n = 1

n = 2

n = 3

n = 4

n = 5

434 nm
Violet

486 nm
Blue-green

657 nm
Red

e–

e–

e–

The Bohr Model and Emission Spectra

 ▲ FIGURE 7.12   The Bohr Model and Emission Spectra          In the Bohr model, each spectral line 

is produced when an electron falls from one stable orbit, or stationary state, to another of 

lower energy.   
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7.4  The Wave Nature of Matter: the de Broglie Wavelength, the Uncertainty Principle, and Indeterminacy      265

and prevents the electrons in an atom from crashing into the nucleus as they are pre-

dicted to do according to classical physics. We now turn to three important manifesta-

tions of the electron’s wave nature: the de Broglie wavelength, the uncertainty principle, 

and indeterminacy. 

  The de Broglie Wavelength 
 As we have seen, a single electron traveling through space has a wave nature; its 

wavelength is related to its kinetic energy (the energy associated with its motion). 

The faster the electron is moving, the higher its kinetic energy and the shorter its 

wavelength. The wavelength (l) of an electron of mass  m  moving at velocity v is 

given by the  de Broglie relation : 

    l =
h

mv
  de Broglie relation   [7.4]   

 where  h  is Planck’s constant. Notice that the velocity of a moving electron is related to its 

wavelength—knowing one is equivalent to knowing the other.      

Interference
pattern

Actual electron behavior

(a)

Electron
source

Bright
spot

Bright
spot

Particle
beam

(b)

Expected behavior
for particles

      

 ▲ FIGURE 7.13   Electron Diffraction          When a beam of electrons goes through two closely spaced 

slits  (a) , an interference pattern is created, as if the electrons were waves. By contrast, a beam of 

particles passing through two slits  (b)  should simply produce two smaller beams of particles. Notice 

that for particle beams, there is a dark line directly behind the center of the two slits, in contrast to 

wave behavior, which produces a bright line.   

 The mass of an object ( m ) times its 
velocity ( v ) is its momentum. Therefore, 
the wavelength of an electron is 
inversely proportional to its momentum. 
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266      Chapter 7  The Quantum-Mechanical Model of the Atom

  EXAMPLE 7.4 De Broglie Wavelength 

 Calculate the wavelength of an electron traveling with a speed of  2.65 * 106 m/s. 

  SORT  You are given the speed of 

an electron and asked to calculate 

its wavelength. 

  GIVEN  v = 2.65 * 106 m/s 

  FIND  l 

  STRATEGIZE  The conceptual plan 

shows how the de Broglie relation 

relates the wavelength of an elec-

tron to its mass and velocity. 

  CONCEPTUAL PLAN  

 

h
λ =

mv

λv

         RELATIONSHIPS USED  

 l = h>mv (de Broglie relation, Equation 7.4) 

  SOLVE  Substitute the velocity, 

Planck’s constant, and the mass of 

an electron to calculate the elec-

tron’s wavelength. To correctly 

cancel the units, break down the J 

in Planck’s constant into its SI 

base units  (1 J = 1 kg # m2>s2). 

  SOLUTION  

 l =
h

mv
=

6.626 * 10-34 
kg # m2

s2  s 

(9.11 * 10-31 kg) a2.65 * 106 
m
s
b

 

 = 2.74 * 10-10 m 

  CHECK  The units of the answer (m) are correct. The magnitude of the answer is very 

small, as expected for the wavelength of an electron. 

  FOR PRACTICE 7.4  

 What is the velocity of an electron having a de Broglie wavelength that is approxi-

mately the length of a chemical bond? Assume this length to be  1.2 * 10-10 m. 

  Conceptual Connection 7.2    The de Broglie Wavelength of 
Macroscopic Objects 

 Since quantum-mechanical theory is universal, it applies to all objects, regardless of size. 

Therefore, according to the de Broglie relation, a thrown baseball should also exhibit 

wave properties. Why do we not observe such properties at the ballpark?   

  The Uncertainty Principle 
 The wave nature of the electron is difficult to reconcile with its particle nature. How can 

a single entity behave as both a wave and a particle? We can begin to answer this question 

by returning to the single-electron diffraction experiment. Specifically, we can ask the 

question: how does a single electron aimed at a double slit produce an interference pat-

tern? We saw previously that the electron travels through both slits and interferes with 

itself. This idea is testable. We simply have to observe the single electron as it travels 

through both of the slits. If it travels through both slits simultaneously, our hypothesis is 

correct. But here is where nature gets tricky.  

 Any experiment designed to observe the electron as it travels through the slits 

results in the detection of an electron “particle” traveling through a single slit and no 

interference pattern. Recall from Section 7.1 that an  unobserved  electron can occupy 

two different states; however, the act of observation forces it into one state or the other. 

Similarly, the act of observing the electron as it travels through both slits forces it go 

through only one slit. The following electron diffraction experiment is designed to 

“watch” which slit the electron travels through by using a laser beam placed directly 

behind the slits.  
 An electron that crosses a laser beam produces a tiny “flash”—a single photon is 

scattered at the point of crossing. A flash behind a particular slit indicates an electron 
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passing through that slit. However, when the experiment is performed, the flash 

always originates either from one slit  or  the other, but  never  from both at once. 

Futhermore, the interference pattern, which was present without the laser, is now 

absent. With the laser on, the electrons hit positions directly behind each slit, as if 

they were ordinary particles. 

 As it turns out, no matter how hard we try, or whatever method we set up,  we can 
never see the interference pattern and simultaneously determine which hole the electron 
goes through . It has never been done, and most scientists agree that it never will. In the 

words of P. A. M. Dirac (1902–1984), 

  There is a limit to the fi neness of our powers of observation and the smallness 

of the accompanying disturbance—a limit which is inherent in the nature of 

things and can never be surpassed by improved technique or increased skill on 

the part of the observer.  

 The single electron diffraction experiment demonstrates that you cannot simulta-

neously observe both the wave nature and the particle nature of the electron. When 

you try to observe which hole the electron goes through (associated with the particle 

nature of the electron) you lose the interference pattern (associated with the wave 

nature of the electron). When you try to observe the interference pattern, you cannot 

determine which hole the electron goes through. The wave nature and particle nature 

of the electron are said to be  complementary properties . Complementary properties 

exclude one another—the more you know about one, the less you know about the 

other. Which of two complementary properties you observe depends on the experi-

ment you perform—in quantum mechanics, the observation of an event affects 

its outcome. 

 As we just saw in the de Broglie relation, the  velocity  of an electron is related to its 

 wave nature . The  position  of an electron, however, is related to its  particle nature . 

(Particles have well-defined positions, but waves do not.) Consequently, our inability to 

observe the electron simultaneously as both a particle and a wave means that we cannot 

simultaneously measure its position and its velocity. Werner Heisenberg formalized this 

idea with the equation: 

    �x * m�v Ú

h

4p
 Heisenberg>s uncertainty principle [7.5]   

 where �x is the uncertainty in the position, �v is the uncertainty in the velocity,  m  is the 

mass of the particle, and  h  is Planck’s constant.  Heisenberg’s uncertainty principle  

Actual electron
behavior

Laser beam

Bright
spot

Bright
spot

Electron
source

      

        ▲ Werner Heisenberg (1901–1976)  
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268      Chapter 7  The Quantum-Mechanical Model of the Atom

states that the product of �x and  m �v must be greater than or equal to a finite number  

(h>4p) . In other words, the more accurately you know the position of an electron (the 

smaller �x) the less accurately you can know its velocity (the bigger �v) and vice versa. 

The complementarity of the wave nature and particle nature of the electron results in the 

complementarity of velocity and position.  
 Although Heisenberg’s uncertainty principle may seem puzzling, it actually solves a 

great puzzle. Without the uncertainty principle, we are left with the question: how can 

something be  both  a particle and a wave? Saying that an object is both a particle and a 

wave is like saying that an object is both a circle and a square, a contradiction. Heisenberg 

solved the contradiction by introducing complementarity—an electron is observed as 

 either  a particle or a wave, but never both at once.  

  Indeterminacy and Probability Distribution Maps 
 According to classical physics, and in particular Newton’s laws of motion, particles move 

in a  trajectory  (or path) that is determined by the particle’s velocity (the speed and direction 

of travel), its position, and the forces acting on it. Even if you are not familiar with Newton’s 

laws, you probably have an intuitive sense of them. For example, when you chase a baseball 

in the outfield, you visually predict where the ball will land by observing its path. You do 

this by noting its initial position and velocity, watching how these are affected by the forces 

acting on it (gravity, air resistance, wind), and then inferring its trajectory, as shown in 

 Figure   7.14   ▼. If you knew only the ball’s velocity, or only its position (imagine a still photo 

of the baseball in the air), you could not predict its landing spot. In classical mechanics, 

both position and velocity are required to predict a trajectory.  
 Newton’s laws of motion are  deterministic —the present  determines  the future. This 

means that if two baseballs are hit consecutively with the same velocity from the same 

position under identical conditions, they will land in exactly the same place. The same is 

not true of electrons. We have just seen that we cannot simultaneously know the position 

and velocity of an electron; therefore, we cannot know its trajectory. In quantum mechan-

ics, trajectories are replaced with  probability distribution maps , as shown in  Figure   7.15   ▼. 

The Classical Concept of Trajectory

Trajectory
Position of ball

Force on ball
(gravity)

Velocity of ball

 ▶FIGURE 7.14   The Concept of 

Trajectory          In classical mechanics, 

the position and velocity of a particle 

determine its future trajectory, or path. 

Thus, an outfielder can catch a 

baseball by observing its position and 

velocity, allowing for the effects of 

forces acting on it, such as gravity, 

and estimating its trajectory. (For 

simplicity, air resistance and wind are 

not shown.)   

Classical
trajectory

Quantum-mechanical
probability distribution map

 ▲ FIGURE 7.15   Trajectory versus Probability          In quantum mechanics, we cannot calculate 

deterministic trajectories. Instead, it is necessary to think in terms of probability maps: statistical 

pictures of where a quantum-mechanical particle, such as an electron, is most likely to be found. In 

this hypothetical map, darker shading indicates greater probability.   

 Remember that velocity includes speed 
as well as direction of travel. 
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7.5  Quantum Mechanics and the Atom      269

A probability distribution map is a statistical map that shows where an electron is likely 

to be found under a given set of conditions.     
 To understand the concept of a probability distribution map, let us return to baseball. 

Imagine a baseball thrown from the pitcher’s mound to a catcher behind home plate 

( Figure   7.16   ▶). The catcher can watch the baseball’s path, predict exactly where it will cross 

home plate, and place his mitt in the correct place to catch it. As we have seen, this would 

be impossible for an electron. If an electron were thrown from the pitcher’s mound to home 

plate, it would generally land in a different place every time, even if it were thrown in 

exactly the same way. This behavior is called  indeterminacy . Unlike a baseball, whose 

future path is  determined  by its position and velocity when it leaves the pitcher’s hand, the 

future path of an electron is indeterminate, and can only be described statistically.  
 In the quantum-mechanical world of the electron, the catcher could not know exactly 

where the electron will cross the plate for any given throw. However, if he kept track of 

hundreds of identical electron throws, the catcher could observe a reproducible  statistical 
pattern  of where the electron crosses the plate. He could even draw a map of the strike zone 

showing the probability of an electron crossing a certain area, as shown in  Figure   7.17   ▼. This 

would be a probability distribution map. In the sections that follow, we discuss quantum-

mechanical electron  orbitals , which are essentially probability distribution maps for elec-

trons as they exist within atoms.    
 ▲ FIGURE 7.16   Trajectory of a 

Macroscopic Object          A baseball 

follows a well-defined trajectory from 

the hand of the pitcher to the mitt of 

the catcher.   
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 ▲ FIGURE 7.17   The Quantum-Mechanical Strike Zone          An electron does not have a well-defined 

trajectory. However, we can construct a probability distribution map to show the relative probability 

of it crossing home plate at different points.   

  7.5 Quantum Mechanics and the Atom 
 As we have seen, the position and velocity of the electron are complementary properties—

if we know one accurately, the other becomes indeterminate. Since velocity is directly 

related to energy (we have seen that kinetic energy equals 
1
2 mv2), position and  energy  are 

also complementary properties—the more you know about one, the less you know about 

the other. Many of the properties of an element, however, depend on the energies of its 

electrons. For example, whether an electron is transferred from one atom to another to form 

an ionic bond depends in part on the relative energies of the electron in the two atoms. In 

the following paragraphs, we describe the probability distribution maps for electron states 

in which the electron has well-defined energy, but not well-defined position. In other words, 

for each state, we can specify the  energy  of the electron precisely, but not its location at a 

given instant. Instead, the electron’s position is described in terms of an  orbital , a probabil-

ity distribution map showing where the electron is likely to be found. Since chemical bond-

ing often involves the sharing of electrons between atoms to form covalent bonds, the 

spatial distribution of atomic electrons is important to bonding.    
 The mathematical derivation of energies and orbitals for electrons in atoms comes 

from solving the Schrödinger equation for the atom of interest. The general form of the 

Schrödinger equation is: 

    Hc = Ec [7.6]   

 These states are known as energy 
 eigenstates . 
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 The symbol H stands for the Hamiltonian operator, a set of mathematical operations that 

represent the total energy (kinetic and potential) of the electron within the atom. The sym-

bol  E  is the actual energy of the electron. The symbol  c is the  wave function , a mathemati-

cal function that describes the wavelike nature of the electron. A plot of the wave function 

squared (c2) represents an orbital, a position probability distribution map of the electron.       

  Solutions to the Schrödinger Equation for the Hydrogen Atom 
 When the Schrödinger equation is solved, it yields many solutions—many possible wave 

functions. The wave functions themselves are fairly complicated mathematical functions, 

and we do not examine them in detail in this book. Instead, we introduce graphical repre-

sentations (or plots) of the orbitals that correspond to the wave functions. Each orbital is 

specified by three interrelated  quantum numbers :   n  , the  principal quantum number ;   l  , 
the  angular momentum quantum number  (sometimes called the  azimuthal quantum 
number ); and ml the  magnetic quantum number . These quantum numbers all have inte-

ger values, as had been hinted at by both the Rydberg equation and Bohr’s model. A fourth 

quantum number,  m    s   , the  spin quantum number , specifies the orientation of the spin of 

the electron. We examine each of these quantum numbers individually. 

  Th e Principal Quantum Number ( n ) 
 The principal quantum number is an integer that determines the overall size and energy 

of an orbital. Its possible values are n = 1, 2, 3, c and so on. For the hydrogen atom, 

the energy of an electron in an orbital with quantum number  n  is given by 

    En = -2.18 * 10-18 Ja 1

n2 b  (n = 1, 2, 3, c)  [7.7]   

 The energy is negative because the energy of the electron in the atom is less than the 

energy of the electron when it is very far away from the atom (which is taken to be zero). 

Notice that orbitals with higher values of  n  have greater (less negative) energies, as shown 

in the energy level diagram below. Notice also that, as  n  increases, the spacing between 

the energy levels becomes smaller. 

 

n = 4 E4 = –1.36 × 10–19 J
n = 3 E3 = –2.42 × 10–19 J

n = 2

En
er

gy

E2 = –5.45 × 10–19 J

n = 1 E1 = –2.18 × 10–18 J        

  Th e Angular Momentum Quantum Number ( l  ) 
 The angular momentum quantum number is an integer that determines the shape of 

the orbital. We consider these shapes in Section 7.6. The possible values of  l  are 

0, 1, 2, c , (n - 1). In other words, for a given value of  n ,  l  can be any integer (includ-

ing 0) up to n - 1. For example, if n = 1, then the only possible value of  l  is 0; if n = 2, 
the possible values of  l  are 0 and 1. In order to avoid confusion between  n  and  l , values of 

 l  are often assigned letters as follows:      

 Value of  l   Letter Designation 

 l = 0   s   

 l = 1   p   

 l = 2   d   

 l = 3   f  

 An operator is different from a normal 
algebraic entity. In general, an operator 
transforms a mathematical function into 
another mathematical function. For 
example, d>dx  is an operator that 
means “take the derivative of.” When 
d>dx  operates on a function (such as x2) 
it returns another function (2x ). 

 The symbol c is the Greek letter psi, 
pronounced “sigh.” 

 The values of  l  beyond 3 are designated 
with letters in alphabetical order so 
that l = 4 is designated  g , l = 5 is 
designated  h , and so on. 
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  Conceptual Connection 7.3   The Relationship Between  n  and  l  

 What is the full range of possible values of  l  for  n  = 3? 

   (a)   0 (or  s )       (b)   0 and 1 (or  s  and  p )       (c)   0, 1, and 2 (or  s ,  p , and  d )       (d)   0, 1, 2, 

and 3 (or  s ,  p ,  d , and  f )     

  Th e Magnetic Quantum Number ( m l  ) 
 The magnetic quantum number is an integer that specifies the orientation of the orbital. 

We consider these orientations in Section 7.6. The possible values of ml are the integer 

values (including zero) ranging from - l to + l . For example, if l = 0, then the only pos-

sible value of ml is 0; if l = 1, the possible values of ml are -1, 0, and +1.   

  Conceptual Connection 7.4   The Relationship between  l  and  m l   

 What is the full range of possible values of  m l   for  l  = 2? 

    (a)   0, 1, and 2       (b)   0        (c)   -1, 0 and +1       (d)   -2, -1, 0, +1, and +2      

  Th e Spin Quantum Number ( m s  ) 
 The spin quantum number specifies the orientation of the  spin  of the electron.  Electron 
spin  is a fundamental property of an electron (like its negative charge). One electron does 

not have more or less spin than another—all electrons have the  same amount of spin. The 

orientation of the electron’s spin is quantized, with only two possibilities that we can call 

spin up ( m s   = +1/2) and spin down ( m s   = -1/2). The spin quantum number becomes 

important when we begin to consider how electrons occupy orbitals (Section 8.3). For 

now, we will focus on the first three quantum numbers.    

 Th e Hydrogen Atom Orbitals
  Each specific combination of the first three quantum numbers ( n ,  l , and ml) specifies one 

atomic orbital. For example, the orbital with n = 1, l = 0, and ml = 0 is known as the 

1 s  orbital. The 1 in 1 s  is the value of  n  and the  s  specifies that l = 0. There is only one 1 s  

orbital in an atom, and its ml value is zero. Orbitals with the same value of  n  are said to be 

in the same  principal level  (or  principal shell ). Orbitals with the same value of  n  and  l  
are said to be in the same  sublevel  (or  subshell ). The following diagram shows all of the 

orbitals, each represented by a small square, in the first three principal levels. 

 

n = 1 n = 2

l = 0 l = 0 l = 1 l = 1

ml = –1, 0, +1ml = –1, 0, +1

1s sublevel 2s sublevel 2p sublevels 3s sublevel 3p sublevels 3d sublevels

ml = 0

n = 3

l = 2

ml = –2, –1, 0, +1, +2

l = 0

ml = 0ml = 0

Sublevel
(specified by
n and l)

Orbital
(specified by
n, l, and ml)

Principal level
(specified by n)

       

 For example, the n = 2 level contains the l = 0 and l = 1 sublevels. Within the 

n = 2 level, the l = 0 sublevel—called the 2 s  sublevel—contains only one orbital (the 

2 s  orbital), with ml = 0. The l = 1 sublevel—called the 2 p  sublevel—contains three 2 p  

orbitals, with ml = -1, 0, +1. 
 In general, notice the following: 

   •   The number of sublevels in any level is equal to  n , the principal quantum number. 

Therefore, the n = 1 level has one sublevel, the n = 2 level has two sublevels, etc.  

  •   The number of orbitals in any sublevel is equal to 2l + 1. Therefore, the  s  sublevel 

(l = 0) has one orbital, the  p  sublevel (l = 1) has three orbitals, the  d  sublevel 

(l = 2) has five orbitals, etc.  

  •   The number of orbitals in a level is equal to n2 . Therefore, the n = 1 level has one 

orbital, the n = 2 level has four orbitals, the n = 3 level has nine orbitals, etc.   

 The idea of a “spinning” electron is 
something of a metaphor. A more 
correct way to express the same idea 
is to say that an electron has inherent 
angular momentum. 

5090X_07_ch7_p252-285.indd   2715090X_07_ch7_p252-285.indd   271 11/10/11   10:26 AM11/10/11   10:26 AM



272      Chapter 7  The Quantum-Mechanical Model of the Atom

  EXAMPLE 7.5 Quantum Numbers I 

 What are the quantum numbers and names (for example, 2 s , 2 p ) of the orbitals in the 

n = 4 principal level? How many n = 4 orbitals exist? 

  SOLUTION  

 You first determine the possi-

ble values of  l  (from the given 

value of  n ). You then deter-

mine the possible values of 

ml for each possible value of 

 l . For a given value of  n , the 

possible values of  l  are 

0, 1, 2, c , (n - 1). 

 n = 4; therefore l = 0, 1, 2, and 3 

 For a given value of  l , the 

possible values of ml are the  

integer values including zero 

ranging from - l to + l. The 

name of an orbital is its prin-

cipal quantum number ( n ) 

followed by the letter corre-

sponding to the value  l . 
 The total number of orbitals 

is given by n2. 

  l   Possible  m l   Values  Orbital Name(s) 

 0  0  4 s  (1 orbital) 

 1  -1, 0, +1  4 p  (3 orbitals) 

 2  -2, -1, 0, +1, +2  4 d  (5 orbitals) 

 3  -3, -2, -1, 0, +1, +2, +3  4  f   (7 orbitals) 

 Total number of orbitals = 42 = 16   

  FOR PRACTICE 7.5  

 List the quantum numbers associated with all of the 5 d  orbitals. How many 5 d  orbit-

als exist? 

  EXAMPLE 7.6 Quantum Numbers II 

 These sets of quantum numbers are each supposed to specify an orbital. One set, how-

ever, is erroneous. Which one and why? 

    (a)   n = 3; l = 0; ml = 0     

   (b)   n = 2; l = 1; ml = -1  

   (c)   n = 1; l = 0; ml = 0     

   (d)   n = 4; l = 1; ml = -2   

  SOLUTION 

 Choice  (d)  is erroneous because, for l = 1, the possible values of ml are only -1, 0, 

and +1.  

  FOR PRACTICE 7.6 

     Each of the following sets of quantum numbers is supposed to specify an orbital. 

However, each set contains one quantum number that is not allowed. Replace the 

quantum number that is not allowed with one that is allowed.   

    (a)   n = 3; l = 3; ml = +2  

   (b)   n = 2; l = 1; ml = -2  

   (c)   n = 1; l = 1; ml = 0       
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  Atomic Spectroscopy Explained 
 Quantum theory explains the atomic spectra of atoms discussed in Section 7.3. Each 

wavelength in the emission spectrum of an atom corresponds to an electron  transition  

between quantum-mechanical orbitals. When an atom absorbs energy, an electron in a 

lower energy level orbital is  excited  or promoted to a higher energy level orbital, as shown 

in  Figure   7.18   ▼. In this new configuration, however, the atom is unstable, and the electron 

quickly falls back or  relaxes  to a lower energy orbital. As it does so, it releases a photon of 

light containing an amount of energy precisely equal to the energy difference between the 

two energy levels. We saw previously (see Equation 7.7) that the energy of an orbital with 

principal quantum number  n  is given by En = -2.18 * 10-18 J(1>n2), where 

n = 1, 2, 3, c. Therefore, the  difference  in energy between two levels  n  initial  and nfinal 

is given by �E = Efinal - Einitial. If we substitute the expression for En into the expres-

sion for �E, we get the following important expression for the change in energy that 

occurs in an atom when an electron changes energy levels: 

    �E = Efinal - Einitial

 = - 2.18 * 10-18 Ja 1

nf 
2 b - c -2.18 * 10-18 Ja 1

ni 
2 b d

  �E = - 2.18 * 10-18 Ja 1

nf 
2 -

1

ni 
2 b  [7.8]    

 For example, suppose that an electron in a hydrogen atom relaxes from an orbital in 

the n = 3 level to an orbital in the n = 2 level. Recall that the energy of an orbital in the 

hydrogen atom depends only on  n  and is given by En = -2.18 * 10-18 J(1>n2), where 

n = 1, 2, 3, c . Therefore, �E, the energy difference corresponding to the transition 

from n = 3 to n = 2, is determined as follows:     

    �Eatom = E2 - E3

 = -2.18 * 10-18 Ja 1

22 b - c -2.18 * 10-18 Ja 1

32 b d

 = -2.18 * 10-18 Ja 1

22 -  
1

32 b
 = -3.03 * 10-19 J    

 The energy carries a negative sign because the atom  emits  the energy as it relaxes from 

n = 3 to n = 2. Since energy must be conserved, the exact amount of energy emitted by 

the atom is carried away by the photon: 

   �Eatom = -Ephoton   

n = 3

n = 2

n = 1

En
er

gy

Excitation and Radiation

Electron absorbs energy and is
excited to unstable energy level.

Light is emitted as
electron falls back to
lower energy level.

 ▲ FIGURE 7.18   Excitation and Radiation          When an atom absorbs energy, an electron can be excited 

from an orbital in a lower energy level to an orbital in a higher energy level. The electron in this 

“excited state” is unstable, however, and relaxes to a lower energy level, releasing energy in the form 

of electromagnetic radiation.   
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274      Chapter 7  The Quantum-Mechanical Model of the Atom

 This energy then determines the frequency and wavelength of the photon. Since the 

wavelength of the photon is related to its energy as E = hc>l, we calculate the wave-

length of the photon as follows: 

    l =
hc

E

 =
(6.626 * 10-34 J # s)(3.00 * 108 m/s)

3.03 * 10-19 J

 = 6.56 * 10-7 m or 656 nm    

 Consequently, the light emitted by an excited hydrogen atom as it relaxes from an orbital 

in the n = 3 level to an orbital in the n = 2 level has a wavelength of 656 nm (red). We 

can similarly calculate the light emitted due to a transition from n = 4 to n = 2 to be 

486 nm (green). Notice that transitions between orbitals that are further apart in energy 

produce light that is higher in energy, and therefore shorter in wavelength, than transi-

tions between orbitals that are closer together.  Figure   7.19   ▼ shows several of the  transitions 

in the hydrogen atom and their corresponding wavelengths.       

n = ∞

n = 4
n = 5

Level

n = 3

n = 2

Ionization

434 nm

486 nm

656 nm

n = 1

Hydrogen Energy Transitions and Radiation

Ultraviolet
wavelengths

Visible
wavelengths

Infrared
wavelengths

 ▲ FIGURE 7.19   Hydrogen Energy Transitions and Radiation          An atomic energy level diagram for 

hydrogen, showing some possible electron transitions between levels and the corresponding 

wavelengths of emitted light.   

 The Rydberg equation, 
1/l = R (1/m2

- 1/n2), can be 
derived from the relationships just 
covered. We leave this derivation 
to an exercise (see Problem 7.62). 

  Conceptual Connection 7.5   Emission Spectra 

 Which transition will result in emitted light with the shortest wavelength? 

    (a)   n = 5 S  n = 4  

   (b)   n = 4 S  n = 3  

   (c)   n = 3 S  n = 2    
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  EXAMPLE 7.7 Wavelength of Light for a Transition in the Hydrogen Atom 

 Determine the wavelength of light emitted when an electron in a hydrogen atom makes a transition from an orbital in n = 6 to 

an orbital in n = 5. 

  SORT  You are given the energy levels of an atomic transi-

tion and asked to find the wavelength of emitted light. 

  GIVEN  n = 6 S  n = 5 

  FIND  l 

  STRATEGIZE  In the first part of the conceptual plan, 

calculate the energy of the electron in the n = 6 and 

n = 5 orbitals using Equation 7.7 and subtract to find 

�Eatom. 

 In the second part, find Ephoton by taking the negative of 

�Eatom, and then calculate the wavelength corresponding 

to a photon of this energy using Equation 7.3. (The dif-

ference in sign between Ephoton and �Eatom applies only 

to emission.  The energy of a photon must always be 
positive .) 

  CONCEPTUAL PLAN  

 

λ

n = 5, n = 6

Ephoton

ΔE = E5 – E6

hc
λE =

ΔEatom = –Ephoton

Δ Eatom

Δ Eatom

         RELATIONSHIPS USED  

   En = -2.18 * 10-18 J(1>n2)   

   E = hc>l    

 SOLVE Follow the conceptual plan. Begin by calculating 

�Eatom. 

 Calculate Ephoton by changing the sign of �Eatom. 

 Solve the equation relating the energy of a photon to its 

wavelength for l. Substitute the energy of the photon and 

calculate l.   

  SOLUTION  

    �Eatom = E5 - E6

 = -2.18 * 10-18 Ja 1

52 b - c -2.18 * 10-18 Ja 1

62 b d

 = -2.18 * 10-18 Ja 1

52 -

1

62 b
 = -2.6644 * 10-20 J    

    Ephoton = - �Eatom = +2.6644 * 10-20 J   

    E =
hc

l
   

    l =
hc

E
   

    =
(6.626 * 10-34 J # s)(3.00 * 108 m /s)

2.6644 * 10-20 J
   

    = 7.46 * 10-6 m    

  CHECK  The units of the answer (m) are correct for wavelength. The magnitude seems reasonable because 10-6 m is in the 

infrared region of the electromagnetic spectrum. We know that transitions from n = 3 or n = 4 to n = 2 lie in the visible 

region, so it makes sense that a transition between levels of higher n value (which are energetically closer to one another) 

would result in light of longer wavelength. 

  FOR PRACTICE 7.7  

 Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in 

n = 2 to an orbital in n = 7. 

  FOR MORE PRACTICE 7.7  

 An electron in the n = 6 level of the hydrogen atom relaxes to a lower energy level, emitting light of l = 93.8 nm. Find the 

principal level to which the electron relaxed. 
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  7.6 The Shapes of Atomic Orbitals 
 As we noted previously, the shapes of atomic orbitals are important because covalent 

chemical bonds depend on the sharing of the electrons that occupy these orbitals. In one 

model of chemical bonding, for example, a bond consists of the overlap of atomic orbit-

als on adjacent atoms. Therefore the shapes of the overlapping orbitals determine the 

shape of the molecule. Although we limit ourselves in this chapter to the orbitals of the 

hydrogen atom, we will see in  Chapter   8    that the orbitals of all atoms can be approxi-

mated as being hydrogen-like and therefore have very similar shapes to those of 

hydrogen. 

 The shape of an atomic orbital is determined primarily by  l , the angular momentum 

quantum number. Recall that each value of  l  is assigned a letter that therefore corre-

sponds to particular orbitals. For example, the orbitals with l = 0 are  s  orbitals; those 

with l = 1,  p  orbitals; those with l = 2,  d  orbitals, etc. We now examine the shape of 

each of these orbitals. 

   s  Orbitals (l = 0) 
 The lowest energy orbital is the spherically symmetrical 1 s  orbital shown in  Figure   7.20a   ▼. 

This image is actually a three-dimensional plot of the wave function squared (c2), which rep-

resents  probability density , the probability (per unit volume) of finding the electron at a point 

in space. 

   c2 = probability density =
probability

unit volume
    

 The magnitude of c2 in this plot is proportional to the density of the dots shown in the 

image. The high dot density near the nucleus indicates a higher probability density for the 

electron there. As you move away from the nucleus, the probability density decreases. 

 Figure   7.20(b)   ▼ shows a plot of probability density (c2) versus  r , the distance from the 

nucleus. This is essentially a slice through the three-dimensional plot of c2 and shows 

how the probability density decreases as  r  increases. 

 We can understand probability density with the help of a thought experiment. 

Imagine an electron in the 1 s  orbital located within the volume surrounding the nucleus. 

Imagine also taking a photograph of the electron every second for 10 or 15 minutes. In 

one photograph, the electron is very close to the nucleus, in another it is farther away, and 

so on. Each photo has a dot showing the electron’s position relative to the nucleus when 

the photo was taken. Remember that you can never predict where the electron will be for 

any one photo. However, if you took hundreds of photos and superimposed all of them, 

you would have a plot similar to  Figure   7.20(a)   —a statistical representation of how likely 

the electron is to be found at each point. 

 An atomic orbital can also be represented by a geometrical shape that encompasses 

the volume where the electron is likely to be found most frequently—typically, 90% of 

Pr
ob

ab
ili
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y 
(ψ
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Height of curve
proportional to

probability density  (ψ2).
Density of dots
proportional to

probability density  (ψ2).

z

y
r

x

r

1s orbital

(a) (b)
▲  FIGURE 7.20   The 1 s  Orbital: Two Representations          In  (a)  the dot density is proportional to the 

electron probability density. In  (b),  the height of the curve is proportional to the electron probability 

density. The  x -axis is  r , the distance from the nucleus.   
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the time. For example, the 1 s  orbital can be represented as the three-dimensional sphere 

shown in  Figure   7.21   ▶. If we were to superimpose the dot-density representation of the 

1 s  orbital on the shape representation, 90% of the dots would be within the sphere, 

meaning that when the electron is in the 1 s  orbital it has a 90% chance of being found 

within the sphere.     
 The plots we have just seen represent probability  density . However, they are a bit 

misleading because they seem to imply that the electron is most likely to be found  at 
the nucleus . To get a better idea of where the electron is most likely to be found, we 

can use a plot called the  radial distribution function , shown in  Figure   7.22   ▶ for the 

1 s  orbital. The radial distribution function represents the  total probability of finding 
the electron within a thin spherical shell at a distance r from the nucleus .

Total radial probability (at a given r) =
probability

unit volume
* volume of shell at r  

 The radial distribution function represents, not  probability density   at a point r , but  total 
probability at a radius r . In contrast to probability density, which has a maximum at the 

nucleus, the radial distribution function has a value of  zero  at the nucleus. It increases to 

a maximum at 52.9 pm and then decreases again with increasing  r .     
 The shape of the radial distribution function is the result of multiplying together two 

functions with opposite trends in  r : 

    1.   the probability density function (c2), which is the probability per unit volume, has a 

maximum at the nucleus, and decreases with increasing  r   

   2.   the volume of the thin shell, which is zero at the nucleus and increases with increasing  r .   

 At the nucleus (r = 0) the probability  density  is at a maximum; however, the volume of a 

thin spherical shell is zero, so the radial distribution function is zero. As  r  increases, the 

volume of the thin spherical shell increases. We can see this by analogy to an onion. A 

spherical shell at a distance  r  from the nucleus is like a layer in an onion at a distance  r  from 

its center. If the layers of the onion all have the same thickness, then the volume of any one 

layer—think of this as the total amount of onion in the layer—is greater as  r  increases. 

Similarly, the volume of any one spherical shell in the radial distribution function increases 

with increasing distance from the nucleus, resulting in a greater total probability of finding 

the electron within that shell. Close to the nucleus, this increase in volume with increasing 

 r  outpaces the decrease in probability density, producing a maximum at 52.9 pm. Farther 

out, however, the density falls off faster than the volume increases. 

 The maximum in the radial distribution function, 52.9 pm, turns out to be the very 

same radius that Bohr had predicted for the innermost orbit of the hydrogen atom. However, 

there is a significant conceptual difference between the two radii. In the Bohr model, every 

time you probe the atom (in its lowest energy state), you would find the electron at a radius 

of 52.9 pm. In the quantum-mechanical model, you would generally find the electron at 

various radii, with 52.9 pm having the greatest probability. 

 The probability densities and radial distribution functions for the 2 s  and 3 s  orbitals 

are shown in  Figure   7.23   ▶. Like the 1 s  orbital, these orbitals are spherically symmetric. 

These orbitals are larger in size, however, than the 1 s  orbital, and, unlike the 1 s  orbital, 

they contain  nodes . A  node  is a point where the wave function (c), and therefore the 

probability density (c2) and radial distribution function, all go through zero. A node in a 

wave function is much like a node in a standing wave on a vibrating string. We can see 

nodes in an orbital most clearly by actually looking at a slice through the orbital. Plots of 

probability density and the radial distribution function as a function of  r  both reveal the 

presence of nodes. The probability of finding the electron at a node is zero.       
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1s orbital surface

▲  FIGURE 7.21   The 1 s  Orbital 

Surface          In this representation, the 

surface of the sphere encompasses the 

volume where the electron is found 

90% of the time when the electron is in 

the 1 s  orbital.   
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▲  FIGURE 7.22   The Radial 

Distribution Function for the 

1 s  Orbital          The curve shows the total 

probability of finding the electron 

within a thin shell at a distance  r  from 

the nucleus.   

Nodes

        ▲ The nodes in quantum-mechanical atomic orbitals are three-dimensional analogs of the nodes we 

find on a vibrating string.  

 When an orbital is represented as 
shown below, the surface shown is one 
of constant probability. The probability 
of finding the electron at any point on 
the surface is the same. 
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   p  Orbitals (l = 1) 
 Each principal level with n = 2 or greater contains three  p  orbitals (ml = -1, 0, +1). The 

three 2 p  orbitals and their radial distribution functions are shown in  Figure   7.24   ▶. The  p  orbitals 

are not spherically symmetric like the  s  orbitals, but have two  lobes  of electron density on 
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4

 ▲ FIGURE 7.23   Probability Densities and Radial Distribution Functions for the 2 s  and 3 s  Orbitals       

 A nodal plane is a plane where the 
electron probability density is zero. For 
example, in the  d xy   orbitals, the nodal 
planes lie in the  xz  and  yz  planes. 
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        ▲  FIGURE 7.25   The 3 d  Orbitals       

▲  FIGURE 7.24   The 2 p  Orbitals and 

Their Radial Distribution Function  

        The radial distribution function is the 

same for all three 2 p  orbitals when the 

 x -axis of the graph is taken as the axis 

containing the lobes of the orbital.   

either side of the nucleus and a node located at the nucleus. The three  p  orbitals differ only in 

their orientation and are orthogonal (mutually perpendicular) to one another. It is convenient 

to define an  x- ,  y- , and  z- axis system and then label each  p  orbital as px, py, and pz. The 3 p , 4 p , 

5 p , and higher  p  orbitals are all similar in shape to the 2 p  orbitals, but they contain additional 

nodes (like the higher  s  orbitals) and are progressively larger in size.   

   d  Orbitals (l = 2) 
 Each principal level with n = 3 or greater contains five  d  orbitals (ml = -2, -1, 0, +1, 
+2). The five 3 d  orbitals are shown in  Figure   7.25   ▼. Four of these orbitals have a cloverleaf 

shape, with four lobes of electron density around the nucleus and two perpendicular nodal 

planes. The dxy, dxz, and dyz orbitals are oriented along the  xy ,  xz , and  yz  planes, respectively, 

and their lobes are oriented  between  the corresponding axes. The four lobes of the dx2 -  y2 

orbital are oriented along the  x - and  y -axes. The dz2 orbital is different in shape from the other 

four, having two lobes oriented along the  z -axis and a donut-shaped ring along the  xy  plane. 

The 4 d , 5 d , 6 d , etc., orbitals are all similar in shape to the 3 d  orbitals, but they contain addi-

tional nodes and are progressively larger in size.      
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   f  Orbitals (l = 3) 
 Each principal level with n = 4 or greater contains seven  f  orbitals (ml = -3, -2, 
-1, 0, +1, +2, +3). These orbitals have more lobes and nodes than   d   orbitals.  

  The Phase of Orbitals 
 The orbitals we have just seen are three-dimensional waves. We can understand an impor-

tant property of these orbitals by analogy to one-dimensional waves. Consider the one-

dimensional waves shown here: 

 
+

       

 The wave on the left has a positive amplitude over its entire length, while the wave on the 

right has a positive amplitude over half of its length and a negative amplitude over the 

other half. The sign of the amplitude of a wave—positive or negative—is known as its 

 phase . In these images, blue indicates positive phase and red indicates negative phase. The 

phase of a wave determines how it interferes with another wave as we saw in Section 7.2. 

 Just as a one-dimensional wave has a phase, so does a three-dimensional wave. We 

often represent the phase of a quantum mechanical orbital with color. For example, we 

can represent the phase of a 1s and 2p orbital as follows: 

 

2p orbital1s orbital
       

 In these depictions, blue represents positive phase and red represents negative phase. The 

1s orbital is all one phase, while the 2p orbital exhibits two different phases. The phase of 

quantum mechanical orbitals is important in bonding, as we shall see in  Chapter   10   .   

  The Shapes of Atoms 
 If some orbitals are shaped like dumbbells and three-dimensional cloverleafs, and if most 

of the volume of an atom is empty space diffusely occupied by electrons in these orbitals, 

then why do we often depict atoms as spheres? 

 Atoms are usually drawn as spheres because most atoms contain many electrons 

occupying a number of different orbitals. Therefore, the shape of an atom is obtained by 

superimposing all of its orbitals. If we superimpose the   s  ,   p  , and   d   orbitals we get a 

spherical shape, as shown in  Figure   7.26   ◀.     

▲  FIGURE 7.26   Why Atoms Are 

Spherical          Atoms are depicted as 

roughly spherical because all the 

orbitals together make up roughly 

spherical shape.   
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  principal quantum number ( n ) 

(270)  

  angular momentum quantum 

number (l) (270)  

  magnetic quantum number (ml) 

(270)  

  spin quantum number (ms) (271)  

  electron spin (271)  

  principal level (shell) (271)  

  sublevel (subshell) (271)    

  Section 7.6 
   probability density (276)  

  radial distribution function (277)  

  node (277)  

  phase (280)     

  Key Concepts 

  The Realm of Quantum Mechanics (7.1) 
   ▶   The theory of quantum mechanics explains the behavior of par-

ticles in the atomic and subatomic realms. These particles 

include photons (particles of light) and electrons.   

  ▶   Because the electrons of an atom determine many of its chemical 

and physical properties, quantum mechanics is foundational to 

understanding chemistry.    

  The Nature of Light (7.2) 
   ▶   Light is a type of electromagnetic radiation—a form of energy 

embodied in oscillating electric and magnetic fields that travels 

though space at 3.00 * 108 m/s. Light has both a wave nature 

and a particle nature.   

  ▶   The wave nature of light is characterized by its wavelength—the 

distance between wave crests—and the ability of light to experience 

interference (constructive or destructive) and diffraction. Its particle 

nature is characterized by the energy carried in each photon.  

  ▶   The electromagnetic spectrum includes all wavelengths of elec-

tromagnetic radiation from gamma rays (high energy per pho-

ton, short wavelength) to radio waves (low energy per photon, 

long wavelength). Visible light is a tiny sliver in the middle of 

the electromagnetic spectrum.    

  Atomic Spectroscopy (7.3) 
   ▶   Atomic spectroscopy is the study of the light absorbed and emit-

ted by atoms when an electron makes a transition from one 

energy level to another.   

  ▶   The wavelengths absorbed or emitted depend on the energy dif-

ferences between the levels involved in the transition; large 

energy differences result in short wavelengths and small energy 

differences result in long wavelengths.    

  The Wave Nature of Matter (7.4) 
   ▶   Electrons have a wave nature with an associated wavelength, as 

quantified by the de Broglie relation.   

  ▶   The wave nature and particle nature of matter are complemen-

tary, which means that the more you know of one, the less you 

know of the other. The wave–particle duality of electrons is 

quantified in Heisenberg’s uncertainty principle, which states 

that there is a limit to how well we can know both the position 

of an electron (associated with the electron’s particle nature) 

and the velocity of an electron (associated with the electron’s 

wave nature)—the more accurately one is measured, the greater 

the uncertainty in the other.   

  ▶   The inability to simultaneously know both the position and the 

velocity of an electron results in indeterminacy, the inability to 

predict a trajectory for an electron. Consequently electron 

behavior is described differently than the behavior of everyday-

sized particles.   

  ▶   The trajectory we normally associate with macroscopic objects 

is replaced, for electrons, with statistical descriptions that show, 

not the electron’s path, but the region where it is most likely to 

be found.    

  The Quantum-Mechanical Model of the Atom (7.5, 7.6) 
   ▶   The most common way to describe electrons in atoms according 

to quantum mechanics is to solve the Schrödinger equation for 

the energy states of the electrons within the atom. When the 

electron is in these states, its energy is well-defined but its posi-

tion is not. The position of an electron is described by a proba-

bility distribution map called an orbital.  

  ▶   The solutions to the Schrödinger equation (including the ener-

gies and orbitals) are characterized by three quantum numbers: 

 n ,  l , and ml.    
  ▶   The principal quantum number ( n ) determines the energy of 

the electron and the size of the orbital; the angular momentum 

quantum number ( l ) determines the shape of the orbital; and 

the magnetic quantum number (ml) determines the orientation 

of the orbital.     

  Key Equations and Relationships 

  Relationship between Frequency (n), Wavelength (l), 
and the Speed of Light ( c ) (7.2) 

   n =
c

l
    

  Relationship between Energy ( E ), Frequency (n), 
Wavelength (l), and Planck’s Constant ( h ) (7.2) 

   E = hn   

   E =
hc

l
    

  de Broglie Relation: Relationship between Wavelength 
(l), Mass ( m ), and Velocity ( v ) of a Particle (7.4) 

   l =
h

mv
    

  Heisenberg’s Uncertainty Principle: Relationship 
between a Particle’s Uncertainty in Position (�x ) and 
Uncertainty in Velocity (�v ) (7.4) 

   �x * m�v Ú  
h

4p
    

  Energy of an Electron in an Orbital with Quantum 
Number  n  in a Hydrogen Atom (7.5) 

   En = -2.18 * 10-18 J a 1

n2 b  (n = 1, 2, 3,  c)     
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  Key Learning Objectives 

Chapter Objectives Assessment

Calculating the Wavelength and Frequency of Light (7.2) Example 7.1  For Practice 7.1  Exercises 5, 6

Calculating the Energy of a Photon (7.2) Example 7.2  For Practice 7.2  For More Practice 7.2  

Exercises 7–12

Relating Wavelength, Energy, and Frequency to the 
Electromagnetic Spectrum (7.2)

Example 7.3  For Practice 7.3  Exercises 3, 4

Using the de Broglie Relation to Calculate Wavelength (7.4) Example 7.4  For Practice 7.4  Exercises 15–18

Relating Quantum Numbers to One Another and to Their 
Corresponding Orbitals (7.5)

Examples 7.5, 7.6  For Practice 7.5, 7.6  Exercises 21–28

Relating the Wavelength of Light to Transitions in the 
Hydrogen Atom (7.5)

Example 7.7  For Practice 7.7  For More Practice 7.7  

Exercises 35–38

  EXERCISES 

  Problems by Topic 
  Electromagnetic Radiation 

   1.    The distance from the sun to Earth is 1.496 * 108 km. How 

long does it take light to travel from the sun to Earth?   

   2.    The star nearest to our sun is Proxima Centauri, at a distance of 

4.3 light-years from the sun. A light-year is the distance that 

light travels in one year (365 days). How far away, in km, is 

Proxima Centauri from the sun?   

   3.    List these types of electromagnetic radiation in order of (i) 

increasing wavelength and (ii) increasing energy per photon:

    a.   radio waves       b.   microwaves  

   c.   infrared radiation     d.   ultraviolet radiation      

   4.    List these types of electromagnetic radiation in order of (i) 

increasing frequency and (ii) decreasing energy per photon:

    a.   gamma rays       b.   radio waves  

   c.   microwaves       d.   visible light      

   5.    Calculate the frequency of each wavelength of electromagnetic 

radiation:

    a.   632.8 nm (wavelength of red light from helium–neon laser)  

   b.   503 nm (wavelength of maximum solar radiation)  

   c.   0.052 nm (a wavelength contained in medical X-rays)      

   6.    Calculate the wavelength of each frequency of electromagnetic 

radiation:

    a.   100.2 MHz (typical frequency for FM radio broadcasting)  

   b.   1070 kHz (typical frequency for AM radio broadcasting) 

(assume four significant figures)  

   c.   835.6 MHz (common frequency used for cell phone 

communication)      

   7.    Calculate the energy of a photon of electromagnetic radiation at 

each of the wavelengths indicated in Problem 5.   

   8.    Calculate the energy of a photon of electromagnetic radiation at 

each of the frequencies indicated in Problem 6.   

   9.    A laser pulse with wavelength 532 nm contains 4.88 mJ of 

energy. How many photons are in the laser pulse?   

   10.    A heat lamp produces 41.7 watts of power at a wavelength of 

6.5 mm. How many photons are emitted per second? 

(1 watt = 1 J/s)    

   11.    Determine the energy of 1 mol of photons for each kind of light. 

(Assume three significant figures.)

    a.   infrared radiation (1500 nm)  

   b.   visible light (500 nm)  

   c.   ultraviolet radiation (150 nm)      

   12.    How much energy is contained in 1 mol of each type of 

photon?

    a.   X-ray photons with a wavelength of 0.155 nm  

   b.   g-ray photons with a wavelength of 2.55 * 10-5 nm        

  The Wave Nature of Matter and the Uncertainty Principle 

   13.    Make a sketch of the interference pattern that results from the dif-

fraction of electrons passing through two closely spaced slits.   

   14.    What happens to the interference pattern described in Problem 13 

if the rate of electrons going through the slits is decreased to 

one electron per hour? What happens to the pattern if we try to 

determine which slit the electron goes through by using a laser 

placed directly behind the slits?   

   15.    Calculate the wavelength of an electron traveling at 

1.15 * 105 m/s.    

   16.    An electron has a de Broglie wavelength of 225 nm. What is the 

speed of the electron?   

   17.    Calculate the de Broglie wavelength of a 143-g baseball travel-

ing at 95 mph. Why is the wave nature of matter not important 

for a baseball?   

   18.    A 0.22-caliber handgun fires a 2.7-g bullet at a velocity of 765 m/s. 

Calculate the de Broglie wavelength of the bullet. Is the wave 

nature of matter significant for bullets?    

  Orbitals and Quantum Numbers 

  19.     Which electron is, on average, closer to the nucleus: an electron 

in a 2 s  orbital or an electron in a 3 s  orbital?   

  20.     Which electron is, on average, further from the nucleus: an 

electron in a  3 p orbital or an electron in a 4 p  orbital?   

  21.     What are the possible values of  l  for each value of  n ?

    a.   1     b.   2     c.   3      d.   4      
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   22.    What are the possible values of ml for each value of  l ?
    a.   0     b.   1     c.   2     d.   3      

   23.    For the  n  = 3 level, list all the possible values of  l  and ml. How 

many orbitals does the  n  = 3 level contain?   

   24.    For the  n  = 4 level, list all the possible values of  l  and ml. How 

many orbitals does the  n  = 4 level contain?   

   25.    What are the possible values of  m s  ?   

   26.    What do each of the possible values of  m s   in the previous prob-

lem specify?   

   27.    Which set of quantum numbers  cannot  occur together to spec-

ify an orbital?

    a.   n = 2, l = 1, ml = -1  

   b.   n = 3, l = 2, ml = 0  

   c.   n = 3, l = 3, ml = 2  

   d.   n = 4, l = 3, ml = 0      

   28.    Which combinations of  n  and  l  represent real orbitals and which 

are impossible?

    a.   1 s       b.   2 p      c.   4 s      d.   2 d       

   29.    Make a sketch of the 1 s  and 2 p  orbitals. How would the 2 s  and 

3 p  orbitals differ from the 1 s  and 2 p  orbitals?   

   30.    Make a sketch of the 3 d  orbitals. How would the 4 d  orbitals dif-

fer from the 3 d  orbitals?    

  Atomic Spectroscopy 

   31.    An electron in a hydrogen atom is excited with electrical energy 

to an excited state with n = 2. The atom then emits a photon. 

What is the value of  n  for the electron after the emission?   

   32.    Determine whether each transition in the hydrogen atom corre-

sponds to absorption or emission of energy.

    a.   n = 3 S  n = 1  

   b.   n = 2 S  n = 4  

   c.   n = 4 S  n = 3      

   33.    According to the quantum-mechanical model for the hydrogen 

atom, which electron transition produces light with the longer 

wavelength: 2p S  1s or 3p S  1s?    

   34.    According to the quantum-mechanical model for the hydrogen 

atom, which transition produces light with the longer wave-

length: 3p S  2s or 4p S  3p  ?    

   35.    Calculate the wavelength of the light emitted when an electron 

in a hydrogen atom makes each transition and indicate the 

region of the electromagnetic spectrum (infrared, visible, ultra-

violet, etc.) where the light is found.

    a.   n = 2 S  n = 1     b.   n = 3 S  n = 1  

   c.   n = 4 S  n = 2     d.   n = 5 S  n = 2      

   36.    Calculate the frequency of the light emitted when an electron in 

a hydrogen atom makes each transition:

    a.   n = 4 S  n = 3     b.   n = 5 S  n = 1  

   c.   n = 5 S  n = 4     d.   n = 6 S  n = 5      

   37.    An electron in the n = 7 level of the hydrogen atom relaxes to 

a lower energy level, emitting light of 397 nm. What is the value 

of  n  for the level to which the electron relaxed?   

   38.    An electron in a hydrogen atom relaxes to the n = 4 level, 

emitting light of 114 THz. What is the value of  n  for the level in 

which the electron originated?     

  Cumulative Problems 
   39.    Ultraviolet radiation and radiation of shorter wavelengths can 

damage biological molecules because they carry enough energy 

to break bonds within the molecules. A carbon–carbon bond 

requires 348 kJ/mol to break. What is the longest wavelength of 

radiation with enough energy to break carbon–carbon bonds?   

   40.    The human eye contains a molecule called 11- cis -retinal that 

changes conformation when struck with light of sufficient 

energy. The change in conformation triggers a series of events 

that results in an electrical signal being sent to the brain. The 

minimum energy required to change the conformation of 

11- cis -retinal within the eye is about 164 kJ/mol. Calculate the 

longest wavelength visible to the human eye.   

   41.    An argon ion laser puts out 5.0 W of continuous power at a wave-

length of 532 nm. The diameter of the laser beam is 5.5 mm. If 

the laser is pointed toward a pinhole with a diameter of 1.2 mm, 

how many photons will travel through the pinhole per second? 

Assume that the light intensity is equally distributed throughout 

the entire cross-divisional area of the beam. (1 W = 1 J/s)   

   42.    A green leaf has a surface area of 2.50 cm2. If solar radiation is 

1000 W/m2, how many photons strike the leaf every second? 

Assume three significant figures and an average wavelength of 

504 nm for solar radiation.   

   43.    In a technique used for surface analysis called Auger electron 

spectroscopy (AES), electrons are accelerated toward a 

metal surface. These electrons cause the emissions of sec-

ondary electrons—called Auger electrons—from the metal 

surface. The kinetic energy of the auger electrons depends 

on the composition of the surface. The presence of oxygen 

atoms on the surface results in auger electrons with a kinetic 

energy of approximately 506 eV. What is the de Broglie 

wavelength of this electron? 

    3KE = 1
2 mv2; 1 electron volt (eV) = 1.602 * 10-19 J4     

   44.    An X-ray photon of wavelength 0.989 nm strikes a surface. The 

emitted electron has a kinetic energy of 969 eV. What is the 

binding energy of the electron in kJ/mol? 

    3KE = 1
2 mv2; 1 electron volt (eV) = 1.602 * 10-19 J4     

   45.    Ionization involves completely removing an electron from an 

atom. How much energy is required to ionize a hydrogen atom in 

its ground (or lowest energy) state? What wavelength of light con-

tains enough energy in a single photon to ionize a hydrogen atom?   

   46.    The energy required to ionize sodium is 496 kJ/mol. What mini-

mum frequency of light is required to ionize sodium?   

   47.    Suppose that in an alternate universe, the possible values of  l  
were the integer values from 0 to  n  (instead of 0 to n - 1). 

Assuming no other differences from this universe, how many 

orbitals would exist in each level?

    a.    n = 1     b.   n = 2     c.   n = 3      

   48.    Suppose that, in an alternate universe, the possible values of ml 

were the integer values including 0 ranging from - l -1 to 

l + 1 (instead of simply - l to + l). How many orbitals would 

exist in each sublevel?

    a.    s  sublevel     b.    p  sublevel     c.    d  sublevel      

   49.    An atomic emission spectrum of hydrogen shows three wave-

lengths: 1875 nm, 1282 nm, and 1093 nm. Assign these 

wavelengths to transitions in the hydrogen atom.   
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   50.    An atomic emission spectrum of hydrogen shows three wave-

lengths: 121.5 nm, 102.6 nm, and 97.23 nm. Assign these 

wavelengths to transitions in the hydrogen atom.   

   51.    The binding energy of electrons in a metal is 193 kJ/mol. Find 

the threshold frequency of the metal.   

   52.    In order for a thermonuclear fusion reaction of two deuterons 

(2
1H

+) to occur, the deuterons must collide each with a velocity 

of about 1 * 106 m/s. Find the wavelength of such a deuteron.   

   53.    The speed of sound in air is 344 m/s at room temperature. The 

lowest frequency of a large organ pipe is 30 s-1 and the highest 

frequency of a piccolo is 1.5 * 104 s-1. Find the difference in 

wavelength between these two sounds.   

   54.    The distance from Earth to the sun is 1.5 * 108 km. Find the 

number of crests in a light wave of frequency 1.0 * 1014  s-1 

traveling from the sun to the Earth.   

   55.    The iodine molecule can be photodissociated into iodine atoms in 

the gas phase with light of wavelengths shorter than about 792 nm. 

A 100.0 mL glass tube contains 55.7 mtorr of gaseous iodine at 

25.0 �C. What minimum amount of light energy must be absorbed 

by the iodine in the tube to dissociate 15.0% of the molecules?   

   56.    A 5.00 mL ampule of a 0.100 M solution of naphthalene in hex-

ane is excited with a flash of light. The naphthalene emits 15.5 J 

of energy at an average wavelength of 349 nm. What percentage 

of the naphthalene molecules emitted a photon?    

   57.    A laser produces 20.0 mW of red light. In 1.00 hr, the laser emits 

2.29 * 1020 photons. What is the wavelength of the laser?   

   58.    A 1064 nm laser consumes 150.0 watts of electrical power and 

produces a stream of 1.33 * 1019 photons per second. What is 

the percent efficiency of the laser in converting electrical power 

to light?     

  Challenge Problems 
   59.    An electron confined to a one-dimensional box has energy lev-

els given by the equation 

 En = n2h2>8 mL2  

   where  n  is a quantum number with possible values of 

1, 2, 3,c , m is the mass of the particle, and  L  is the length of 

the box. 

    a.   Calculate the energies of the n = 1, n = 2, and n = 3 lev-

els for an electron in a box with a length of 155 pm.  

   b.   Calculate the wavelength of light required to make a transi-

tion from n = 1 S  n = 2 and from n = 2 S  n = 3. In 

what region of the electromagnetic spectrum do these wave-

lengths lie?     

   60.    The energy of a vibrating molecule is quantized much like the 

energy of an electron in the hydrogen atom. The energy levels 

of a vibrating molecule are given by the equation 

 En = (n +
1
2)hv  

   where  n  is a quantum number with possible values of 1, 2,c , 
and n is the frequency of vibration. The vibration frequency of 

HCl is approximately 8.85 * 1013 s-1. What minimum energy 

is required to excite a vibration in HCl? What wavelength of 

light is required to excite this vibration?   

   61.    The wave functions for the 1 s  and 2 s  orbitals are specified by 

these equations: 

 1s c = (1>p)1>2 (1>a3>2
0 ) exp(-r>a0)   

 2s c = (1>32p)1>2 (1>a3>2
0 )(2 - r>a0) exp(-r>a0)  

   where a0 is a constant (a0 = 53 pm) and  r  is the distance from the 

nucleus. Make a plot of each of these wave functions for values of 

 r  ranging from 0 pm to 200 pm. Describe the differences in the 

plots and identify the node in the 2 s  wave function.   

   62.    Before quantum mechanics was developed, Johannes Rydberg 

developed the following equation that predicted the wave-

lengths (l) in the atomic spectrum of hydrogen: 

 1>l = R(1>m2
-  1>n2)  

   In this equation  R  is a constant and  m  and  n  are integers. Use the 

quantum-mechanical model for the hydrogen atom to derive the 

Rydberg equation.   

   63.    Find the velocity of an electron emitted by a metal whose 

threshold frequency is 2.25 * 1014 s-1 when it is exposed to 

visible light of wavelength 5.00 * 10-7 m.   

   64.    Water is exposed to infrared radiation of wavelength 2.8 * 10-4 

cm. Assume that all the radiation is absorbed and converted to 

heat. How many photons will be required to raise the tempera-

ture of 2.0 g of water by 2.0 K?   

   65.    The 2005 Nobel Prize in Physics was given, in part, to scientists 

who had made ultrashort pulses of light. These pulses are impor-

tant in making measurements involving very short time periods.  

One challenge in making such pulses is the uncertainty principle, 

which can be stated with respect to energy and time as 

�E # �t 7 h/4p. What is the energy uncertainty (�E) associated 

with a short pulse of laser light that lasts for only 5.0 femtoseconds 

(fs)?  Suppose the low-energy end of the pulse had a wavelength of 

722 nm. What is the wavelength of the high-energy end of the 

pulse that is limited only by the uncertainty principle?       

   66.    A metal whose threshold frequency is 6.71 * 1014 s-1 emits an 

electron with a velocity of 6.95 * 105 m/s when radiation of 

1.01 * 10 15  s -1  strikes the metal. Use these data to calculate 

the mass of the electron.    

  Conceptual Problems 
   67.    Explain the difference between the Bohr model for the hydro-

gen atom and the quantum-mechanical model. Is the Bohr 

model consistent with Heisenberg’s uncertainty principle?   

   68.    The light emitted from one of these electronic transitions 

(n = 4 S  n = 3 or n = 3 S  n = 2) in the hydrogen atom 

caused the photoelectric effect in a particular metal while light 

from the other transition did not. Which transition was able to 

cause the photoelectric effect and why?   

   69.    Which transition in the hydrogen atom will result in emitted 

light with the longest wavelength?

    a.   n = 4 S  n = 3     b.   n = 2 S  n = 1  

   c.   n = 3 S  n = 2      
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  Answers to Conceptual Connections 

      The Photoelectric Effect 

  7.1 Observation A corresponds to 632 nm; observation B corre-

sponds to 325 nm; and observation C corresponds to 455 nm. 

The shortest wavelength of light (highest energy per photon) 

must correspond to the photoelectrons with the greatest kinetic 

energy. The longest wavelength of light (lowest energy per pho-

ton) must correspond to the observation where no photoelec-

trons were observed.  

      The de Broglie Wavelength of Macroscopic Objects 

  7.2 Because of the baseball’s large mass, its de Broglie wave-

length is minuscule. (For a 150-g baseball, l is on the order of 

10-34 m.) This minuscule  wavelength  is insignificant com-

pared to the size of the baseball itself, and therefore its effects 

are not measurable.  

      The Relationship between  n  and  l  

  7.3 (c) Since  l  can have a maximum value of  n - 1, and since  n  = 3, 

then  l  can have a maximum value of 2.  

      The Relationship between  l  and  m l   

  7.4 (d) Since  m l   can have the integer values (including 0) between 

- l  and + l , and since  l  = 2, the possible values of  m l   are -2, -1, 

0, +1, and +2.  

      Emission Spectra 

  7.5  (c)  The energy difference between n = 3 and n = 2 is greatest 

because the energy spacings get closer together with increasing 

 n . The greater energy difference results in an emitted photon of 

greater energy and therefore shorter wavelength.      

   70.    Determine whether an interference pattern is observed on the 

other side of the slits in each experiment.

    a.   An electron beam is aimed at two closely spaced slits. The 

beam is attenuated to produce only 1 electron per minute.  

   b.   An electron beam is aimed at two closely spaced slits. 

A  light beam is placed at each slit to determine when an 

electron goes through the slit.  

   c.   A high-intensity light beam is aimed at two closely spaced slits.  

   d.   A gun is fired at a solid wall containing two closely spaced 

slits. (Will the bullets that pass through the slits form an 

interference pattern on the other side of the solid wall?)       
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