65. The chart below shows an expression evaluated for hour different values of x.

> $x^2 + x + 5$ x 1 7 11 6 47 61

Josiah concluded that for all positive values of x, $x^2 + x + 5$ produces a prime number. Which value of x serves as a counterexample to prove Josiah's conclusion false? because 35 not prime

C. 16

B. 11

D. 21

66. John's solution to an equation is shown below.

- A. Multiplication Property of Equality
- B. Zero Product Property of Multiplication
- C. Commutative Property of Multiplication f(a,b=0)
- then a=0 or b=0. D. Distributive Property of Multiplication over Addition

Which property of real numbers did John use for Step 2?

Given: x2+5x+6=0

Step 1: (x+2)(x+3)=0Step 2: x+2=0 or x+3=0Step 3: x=-2 or x=-3

67. Stan's solution to an equation is shown below.

Given: n + 8(n + 20) = 110

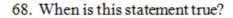
Step 1:
$$n + 8n + 20 = 110$$

Step 2:
$$9n + 20 = 110$$

Step 3:
$$9n = 110 - 20$$

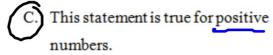
Step 4:
$$9n = 90$$

Step 5:
$$\frac{9n}{9} = \frac{90}{9}$$


Step 6:
$$n = 10$$

Which statement about Stan's solution is true?

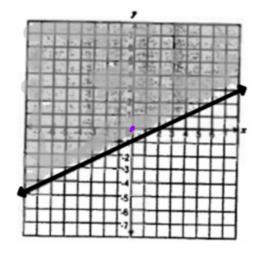
- B. Stan made a mistake in Step 1.


 C. Stan made a mistake in Step 3. distribute See Correction

 D. Stan made a mistake in Step 5. Properly.

The opposite of a number is less than the original number.

- A. This statement in never true.
- B. This statement is always true.

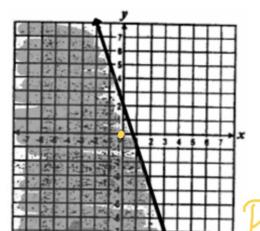


D. This statement is true for negative numbers.

69. What is the y-intercept of the graph of 4x + 2y = 12?

Plug zero in for X. 4(0)+2y=12

70. Which inequality is shown on the graph below?


$$y < \frac{1}{2}x - 1$$

$$y \le \frac{1}{2}x - 1$$

$$y > \frac{1}{2}x - 1$$

$$y \ge \frac{1}{2}x - 1$$

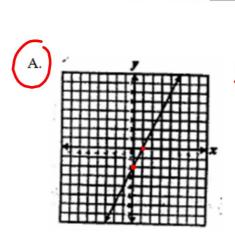
71. Which inequality does the shaded region of the graph represent?

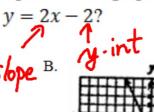
X-int y-int X=3 y=2 Narrows it to either AorB.

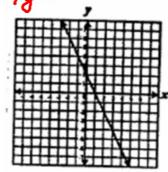
$$A \quad 3x + y \le 2$$

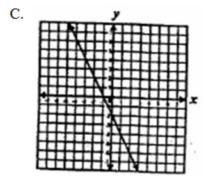
$$B. \quad 3x + y \ge 2$$

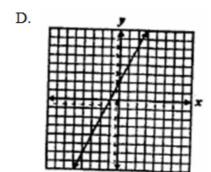
C.
$$3x + y \le -2$$

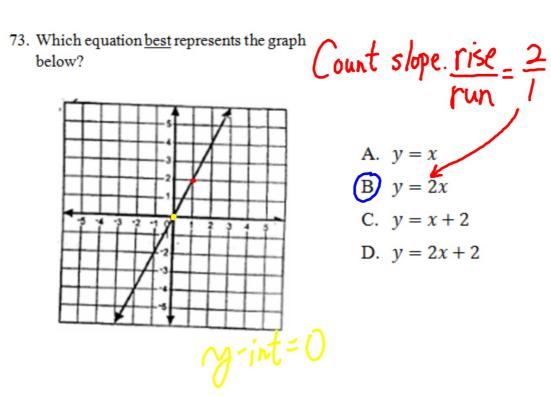

$$D 3x + y \ge -2$$


Pickapoint. How about (0,0)?


1) $0+0\leq 2$ $0\leq 2$ $0\leq 2$

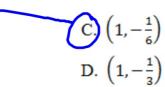

True V False.


72. Which best represents the graph of



A.
$$y = x$$

$$(B) y = 2x$$


C.
$$y = x + 2$$

D.
$$y = 2x + 2$$

74. Which point lies on the line defined by

$$3x + 6y = 2?$$

D.
$$(1, -\frac{1}{3})$$

$$3(1) + 6(-\frac{1}{6}) = 2$$

75. What is the equation of the line that have slope of 4 and passes through the point (3, -10)?

A.
$$y = 4x - 22$$
B. $y = 4x + 22$
C. $y = 4x - 43$
D. $y = 4x + 43$

$$-10 = 4(3) + b$$

$$-12 + b$$

$$-12 + b$$

$$-12 + b$$

$$-13 + 44$$

$$-14x - 22$$

$$-23 = b$$

76. The data in the table shows the cost of renting a bicycle by the hour, including a deposit.

X	y	\
Hours (h)	Cost in dollars (c)	Xiy
2	15	(2,15)
5	30)	(5,30)
8	45	

If hours, h, were graphed on the horizontal axis and cost, c, were graphed on the vertical axis, what would the equation of a line be that fits the

data? Could just plug in or:

A.
$$c = 5h$$

B. $c = \frac{1}{5}h + 5$

C. $c = 5h + 5$

D. $c = 5h - 5$

D. $c = 5h - 5$

A. $c = 5h + 5$

D. $c = 5h - 5$

D. $c = 5h + 5$

C. $c = 5h + 5$

D. $c = 5h + 5$

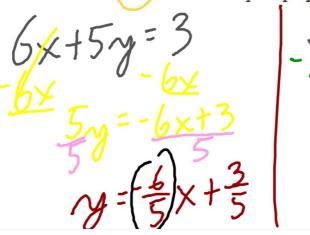
C. $c = 5h + 5$

77.	Some ordered pairs for a linear function of x are
	given in the table below.

x	y
1	1
3	7
5	13
7	19

Which of the following equations was used to

generate the table above?
$$P_{MS}$$
 in, or $MSE_1SAY(1)$ and


A. $y = 2x + 1$
B. $y = 2x - 1$ A. $Slope = \frac{7-1}{3-1} = \frac{6}{2} = 3$
C. $y = 3x - 2$
D. $y = 4x - 3$ B. $y = mx + b$
 $1 = 3(1) + b$
 $\frac{3}{2} = \frac{3}{2}$
 $\frac{3}{2} = \frac{3}{2}$
 $\frac{3}{2} = \frac{3}{2}$

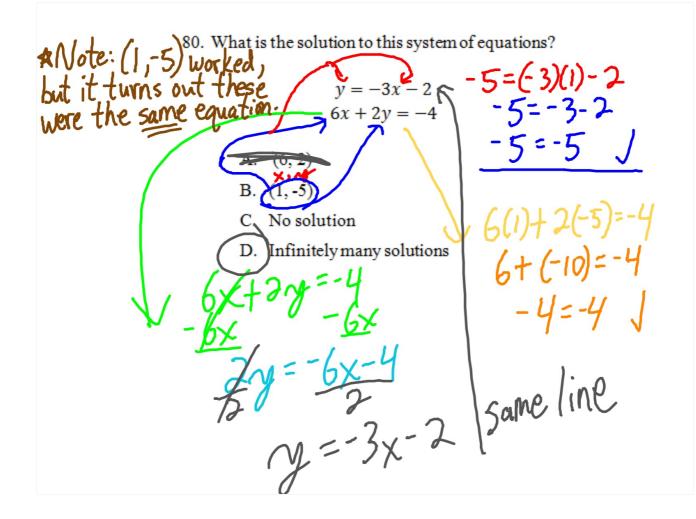
78. The equation of the line l is 6x + 5y = 3, and the equation of line q is 5x - 6y = 0. Which statement about the two lines is true?

Note: Opposite reciprocal slopes, So

- Lines l and q have the same y-intercept.
- B. Lines l and q are parallel.
- $\underline{\mathbf{C}}$. Lines l and q have the same x-intercept.

D. Lines
$$l$$
 and q are perpendicular.

79. Which equation represents a line that is parallel


to
$$y = -\frac{5}{4}x + 2$$
?

(A)
$$y = \left(-\frac{5}{4}\right)^2 + 1$$
 Same slope

B.
$$y = -\frac{4}{5}x + 2$$

C.
$$y = \frac{4}{5}x + 3$$

D.
$$y = \frac{5}{4}x + 4$$

