Advanced Placement Physics 1&2

General Information and Course Policies

Course Objectives

This course is designed to prepare the student for the Advanced Placement Physics 1 and Advanced Placement Physics 2 examinations.

General Procedures and Class Activities

• The class will meet for one or two periods every other day. During this time there will be a variety of activities taking place. Some of the activities include, but are not limited to: laboratory work, class discussion, demonstrations, projects, problem solving activities, quizzes and tests.

• Various activities will require the student to use critical thinking skills. These activities will require the student to make predictions and calculations for theoretical models based principles covered during class. Many of these activities will require the student to use physics applets and simulation software on the internet, which can be found on the instructor's home page.

Prerequisites and Mathematical Competency

- The techniques for problem solving heavily rely upon mathematics in this course. The student is expected to have successfully completed Honors or General Chemistry, and be competent in the following areas of mathematics:
- Algebra (including solving systems of equations)
- Trigonometry
- Logarithms and exponential functions
- Scientific Notation and Unit Conversion
- Graphical Analysis of Data

A Scientific calculator is required Programmable calculators with graphing capabilities are highly recommended.

Evaluation and Grading

The instructor will use a point system in this course

The student will be graded upon the following activities:

Activity	Point Value
Class assignments*	5 - 20
Laboratory Activities*	5 - 50
Homework	5-15
Quizzes*	5-20
Projects	15-50
Exams*	80-140

* If absent, the student must make up the quiz, test or assignment the following day and present the instructor with an excused absence pass from his/her homeroom teacher, or receive a zero on that assignment

The student's percentage for each nine week period will be calculated using the following formula:

Number of points earned by student

Grade = ----- x 100 %

Total Number of points possible

The Student's <u>final grade</u> for the <u>course</u> will be the <u>average of the four nine</u> <u>week grades.</u>

Scoring System

89.5-100 A 79.5-89.4 B 69.5-79.4 C 59.5-69.4 D 59.4 and below E

Course Policies

- Following an absence from class, the student must present the instructor with an excused admission pass from his/her home room teacher. Notes from home will not be accepted. Unexcused absences will result in discipline procedures consistent with the Student Hand Book.
- Three unexcused tardiness in any one nine week period will result in a detention being administered
- The instructor has the right to administer an alternate version of a make up test or quiz that will be given to the student following an excused absence from an exam.
- An unexcused absence or tardy from a test or quiz will result in the student receiving a zero on that assignment and discipline procedures as outlined above.
- Cheating on an exam or quiz or other assignment is an automatic failure of that assignment.
- All assignments, tests and quizzes are due on the day given by the instructor.
- If absent, the student must make up the quiz or test the following day and present the instructor with an excused absence pass from his/her homeroom teacher, or receive a zero on that assignment as noted above.

Outline of Topics

<u>Topic</u>		
<u>Classical Mechanics</u> 9 Weeks		
 Introduction to the course Review of math skills 		
Vectors		
 Vectors and vector math 		
 Vectors and scalars 		
 Graphical and trigonometric methods of 		
vector addition		
 Subtraction of vectors 		

	Multiplication by a scalar
	tion in One Dimension and Kinematic
U	
•	One dimensional motion
	Reference frames
	Distance and displacement
	Average speed, average velocity, and
	instantaneous velocity
	Constant acceleration
	Kinematics equations for constant
	Free fall
_	
	Graphical analysis of motion
	Position, velocity, and acceleration time graphs
	giapiis
0	tion in Two Dimensions and Projectile
	Motion
	2D Motion : Introduction
	Projectile motion: Special case of 2-d
	motion
	motion Relative Motion
e	motion
e	motion Relative Motion
e	motion Relative Motion wton's Laws of Motion and Dynamics
e	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics
e	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force
'e	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law
<u>'e</u>	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law Inertia
<u>e</u>	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law Inertia Mass
'e	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law Inertia Mass Weight: the force of gravity
	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law Inertia Mass Weight: the force of gravity Contact forces
	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law Inertia Mass Weight: the force of gravity Contact forces The normal force Free body diagrams and analysis
e	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law Inertia Mass Weight: the force of gravity Contact forces The normal force Free body diagrams and analysis Friction
e	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law Inertia Mass Weight: the force of gravity Contact forces The normal force Free body diagrams and analysis Friction Motion on an inclined plane with and
	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law Inertia Mass Weight: the force of gravity Contact forces The normal force Free body diagrams and analysis Friction Motion on an inclined plane with and without friction
	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law Inertia Mass Weight: the force of gravity Contact forces The normal force Free body diagrams and analysis Friction Motion on an inclined plane with and without friction Conditions for equilibrium
	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law Inertia Mass Weight: the force of gravity Contact forces The normal force Free body diagrams and analysis Friction Motion on an inclined plane with and without friction Conditions for equilibrium Equilibrium with torque
e	motion Relative Motion wton's Laws of Motion and Dynamics Motion and Force : Dynamics Definition of a Force Newton's first law Inertia Mass Weight: the force of gravity Contact forces The normal force Free body diagrams and analysis Friction Motion on an inclined plane with and without friction Conditions for equilibrium

•	A car rounding a curve
•	Banked curves
•	Unbanked curves
•	Non – uniform circular motion
•	Newton's universal law of gravitation
•	Calculation of the gravitational field near
	the earth's surface
•	Satellite motion
•	Kepler's Laws of Planetary Motion
•	Newton's synthesis of Kepler's third law
•	Types of forces in nature
	Work, Energy and Power
•	Work and energy
	Work by a constant force
• •	The dot product
•	Work done by a varying force
•	Kinetic energy
•	Work energy theorem
•	Gravitational potential energy
•	Elastic potential energy and springs
•	Conservative and non – conservative
	forces
•	Conservation of mechanical energy
•	Problem solving using conservation
	principles
•	Dissipative forces
•	Power
Sve	tems of Particles and Linear Momentum
<u>0y3</u>	terns of Fullicies and Eincar Momentain
•	Momentum and its relation to force
	The relationship between momentum and
	impulse
	Conservation of momentum
	Collisions and impulse
•	
•	Conservation of momentum in collisions
•	Elastic collisions in one dimension
•	(energy and momentum)

•	Inelastic collisions in one dimension		
•	Two dimensional inelastic collisions		
•	Center of mass		
<u> </u>	Rotational Kinematics and Rotational Dynamics		
•	Rotational motion		
•	Rotational Kinematics and rolling motion		
•	Torque		
•	Torque and rotational inertia		
•	Newton's second law applied to torque		
	and rotational motion		
•	Rotational kinetic energy		
•	Angular Momentum and its Conservation		
•	Equilibrium Conditions with incorporating		
	torque		
	Simple Harmonic Motion		
•	Simple Harmonic motion		
•	Graphical analysis of position, velocity,		
	and acceleration time graphs for simple		
	harmonic motion		
•	Energy in the simple harmonic oscillator		
• Do	The sinusoidal nature of SHM		
	e <mark>ference circle</mark> e simple pendulum		
<u></u>			
	<mark>Fluids</mark> 1.5 Weeks		
•	Density and specific gravity		
•	Pressure		
•	Pressure due to depth in a hydrostatic		
	fluid		
•	Atmospheric pressure and gauge		
	Pascal's principle		
•	Buoyancy and Archimedes' principle		
	The Equation of continuity		
•	Bernoulli's Equation		
-			
	Applications of Bernoulli's equation		

<u>Hea</u>	Heat, Kinetic Theory and Thermodynamics 3 Weeks	
•	Temperature and kinetic theory	
•	Atomic theory of matter	
•	Temperature and thermometers	
•	Thermal equilibrium and the zero th law	
	of thermodynamics	
•	Thermal expansion of solids and liquids	
•	Anomalous behavior of water below 4 degrees centigrade	
•	The gas laws and absolute temperature	
•	The Ideal Gas Law	
	The Kinetic Theory of Gasses	
•	Heat as thermal energy transfer	
•	Distinction between temperature, heat	
	and internal energy	
•	Internal energy of an ideal gas	
•	Specific heat	
•	Calorimetry – solving problems	
•	Latent heat	
•	Heat transfer Conduction, Convention,	
	Radiation	
•	The laws of Thermodynamics	
•	The First Law of Thermodynamics	
•	Work and thermodynamic processes	
•	Isobaric, Isochoric, Isothermal and	
-	Adiabatic processes The analysis of a thermodynamic cycle	
•	and its relation to the First Law of	
	Thermodynamics	
•	The Second Law of Thermodynamics	
•	Heat Engines	
•	Diesel,Otto, and Stirling Cycles	
•	Efficiency of an Engine	
•	The Carnot Cycle	
•	The Efficiency of a Carnot Engine	
•	Refrigerators, and Heat Pumps	
•	Entropy, and the Second Law of Thermo	
	dynamics	

Waves and Sound	
2 Weeks	
Types of waves	
• Sound	
 Speed of sound 	
 Intensity of a sound wave 	
 Sound level (decibels) 	
 Reflection and interference of waves 	
 Standing waves on a string (resonance) 	
 Refraction and diffraction 	
 Sources of sound 	
 Vibrating strings and columns of air 	
Resonance in columns of air	
 Interference of sound waves 	
Beats	
The Doppler effect	
Ontion	
<u>Optics</u> 3 Weeks	
S WEEKS	
The Electromagnetic spectrum	
 Measuring the speed of light 	
Light: Geometric Optics	
The ray model	
Reflection of light	
 Index of refraction 	
 Snell's law 	
 Total Internal reflection 	
 Formation of images from spherical 	
mirrors and ray tracing	
 Thin lens , ray tracing 	
 The Lens Equation 	
 Problem solving 	
 Lenses in combination 	
 The Lens Maker's Equation 	
 The Wave Nature of Light 	
 Huygen's principle and diffraction 	
Young's double slit experiment	
Dispersion of Light	
Single slit diffraction	
 The Diffraction grating 	

•	Interference of light in thin films
•	Polarization of light
	Electrostatics and Electric Circuits
	5 Weeks
•	Electric charge
•	Static electricity
•	Conservation of charge
•	Atoms, insulators and conductors
•	Induced charge
•	Coulomb's law
•	Problem solving using Coulomb's law
•	The Electric Field
•	The Electric Field due to multiple point
_	charges
•	Electric Field lines
•	Electric field and conductors
•	The Electric potential and potential
	difference
•	Definition of Potential difference
•	The relationship between the electric
	potential and the electric field
•	The Gradient
•	Equal potential Surfaces
•	The Electron Volt
•	The Electric potential due to a point
	charge
•	Capacitance
•	Dielectrics
•	Storage of electric energy
•	Electric currents
•	Electromotive Force (EMF)
•	The battery
•	Electric current
•	Ohm's law and resistance
•	Resistively
•	Electric power
•	Power in household circuits
•	Alternating current
•	Peak and RMS values
•	Resistors in series and in parallel
•	Kirchhoff's rules for circuit analysis

 Induced emf Emf induced in a moving conductor Magnetic Flux Faraday's law of induction Lenz's law Problem solving using Faraday's law of induction in combination with lenz's law 		
 Induced emf Emf induced in a moving conductor Magnetic Flux Faraday's law of induction Lenz's law Problem solving using Faraday's law of 		
 Induced emf Emf induced in a moving conductor Magnetic Flux Faraday's law of induction 		
 Induced emf Emf induced in a moving conductor Magnetic Flux 		
 Induced emf 		
 Electromagnetic induction 		
 The magnetic moment Electromagnetic induction 		
Torque on a current loop		
Force between two parallel wires		
of a magnetic field produced by a curren		
 Magnetic field due to a straight wire Right hand rule to determine the directio 	n	
of a magnetic force	•••	
 field Right hand rule to determine the directio 	n	
 Force on a charged particle in a magneti field 	C	
 Force on a current in a magnetic field 		
 Electric currents produce magnetism 		
Magnetic fields		
Induction 2.5 Weeks		
<u>Magnetism</u> Magnetostatics and Electromagnetic		
capacitors in combination		
Circuits containing resistors and		
 Internal Resistance Capacitors in series and parallel 		
EMF's		
 Problem solving applying Kirchhoff's rule to multiple loop circuits with multiple 	<mark>:S</mark>	

- Wave nature of matter
 - Models of the atom
 - The Bohr model
 - De Broglie's hypothesis applied to atoms
 - Nuclear physics
 - Structure of the nucleus
 - Binding energy
- Nuclear reactions

<u>Special Relativity</u> 1Week

- Galilean-Newtonian relativity
- The Michelson-Morely experiment
- Postulates of the special theory of relativity
- Simultaneity
- time dilation
- length contraction
- relativistic addition of velocities
 - Relativistic energy and kinetic energy
 - relativistic momentum and mass

Summary of Laboratory Activities

Title: Graphical Analysis of One Dimensional Motion

Description: Using simulation software the students make position vs. time graph of an object undergoing uniform acceleration. They will use graphing software to analyze the slope of the tangent lines to create a velocity-time graph and calculate the acceleration from the slope. Duration: 1 period

Approximate Time of Year: Late August –Early September

Title: Projectile Motion

Description: The students are required to determine the initial velocity of a PASCO ball launcher. From that information they are required to reset the angle to hit various targets. Duration: 2 periods Approximate Time of Year: September Title: Applications of Newton's Laws

Description: The students are required to calculate the coefficient of kinetic friction between a wood block and an inclined plane using a PASCO track system and a photogate. The second part of the lab involves attaching the block to a counter weight and pulley system, and calculating how much counter weight is necessary to place the system in equilibrium.

Duration: 2 periods Approximate Time of Year: end of September

<u>Title: Uniform Circular Motion</u> Description: Using a fire polished glass tube with a mass attached to a string at one end, and a counter weight attached, the students verify the relationship between velocity and centripetal force. Duration: 2 periods Approximate Time of Year: early October

Title: Potential Energy of a spring system

Description: Using a vertical spring system, the students investigate the nature of Hooke's law and how much energy is stored in the system Duration: 1 period Approximate Time of Year: October

Title: Torque and Moments of Inertia

Description: using a rotating system and counter weight the students investigate the relationship of Newton's second law for rotating rigid bodies.

Duration: 1 period Approximate Time of Year: November

Title: Thermal Energy

Description: using a calorimeter and ice the students investigate the thermal energy of a system reaching an equilibrium temperature Duration: 2 periods Approximate Time of Year: early December

<u>Title: Ohm's law</u> Description: Using a resistor, potentiometer, volt and ammeter the student calculates the resistance using graphical analysis. Duration: 1 period Approximate Time of Year: End of January

Title: Kirchhoff's Rules for Circuit analysis

Description: Using several resistors, the student is required to setup a multiple loop circuit with two or more EMF's. Using a multi meter the student is required to measure the current through each branch of the circuit, and the potential difference across various points. The students will then compare their experimental results with the theoretical values they calculated using Kirchhoff's loop and junction rules. Duration : 1 period

Approximate time of Year: End of January

<u>Title: Virtual Electronics Lab: Multiple Loop Circuits</u> Description: Using Simulation software, the student builds multiple loop and EMF circuits, and uses Kirchhoff's laws to calculate current. Duration: 3-4 periods Approximate Time of Year: early February

Title: Resistor - Capacitor Circuits

Description: Using a resistor Capacitor circuit and volt meter the student will analyze the growth and decay of voltage and current in that type of circuit Duration: 2 periods Approximate Time of Year: February

Title: Snell's law

Description: Using a PASCO optics kit the students record the refracted angle and incident angle for a piece of semicircular glass prism. Using graphical analysis the students determine the index of refraction, and in the process verify Snell's law.

Duration: 1 period

Approximate Time of Year: March

Title: Multiple Lens System

Description: Using a PASCO optics kit the students will set up a multiple lens system to locate the position of the final image. They will verify their experimental results with their theoretical prediction. Duration: 1-2 periods Approximate Time of Year: March

Title: Double slit Interference

Description: Using a laser of known wavelength and a PASCO optics kit the students determines the slit separation based on the observed interference pattern Duration: 2 periods Approximate Time of Year: March Title: Single Slit Diffraction

Description: Using a laser of known wavelength and a PASCO optics kit the students determines the slit with of a single slit and determines the with of a human hair using the same laser. Duration:1-2 periods Approximate Time of Year: Early April

Title: Diffraction Grating

Description: Using a laser of known wavelength and a PASCO optics kit the students determines the spacing for the diffraction grating. Then they will use the same grating to determine the wavelengths for red, green and blue light. Duration:1-2 periods Approximate Time of Year: April