LECTURE 3
The Old Quantum Theory - Further Developments

- Line Spectra and Early Atomic Models
- The Correspondence Principle
- The Demise of the Old Quantum Theaory

3.1 Line Spectra and Early Atomic Models

In 1859, Robert Bunsen (1811-1899) and Gustav Kirchhoff (1824-1887) developed an
instrument to study the emission spectra from luminous sources. It was called the spectroscope
and consisted of a prism to disperse incoming light and a telescope through which to observe the
resulting spectrum. Bunsen and Kirchhoff were the first to discover that each chemical element
possesses a unique characteristic line spectrum. That is, each element possesses a spectrum of
lines occurring at certain wavelengths. The particular set of lines emitted is peculiar to the
element, and can be used for identification purposes. For example, the emission spectrum from
incandescent hydrogen vapors shows three characteristic lines in the visible region at 6563,
4861, and 4340 A.

Many attempts were made to work out formulas that predicted the unique set of
wavelengths of the radiation emitted from each different element. Most attempts were
unsuccessful. In 1884 Johann Balmer energized hydrogen atoms and examined the radiation
with a spectroscope. By studying the wavelengths of the observed spectrum, he produced an
empirical relationship that gave the correct wavelengths for lines observed in the hydrogen
spectrum. Just as important, it did not predict the existence of lines that were not observed as
other formulas had. The Balmer formula which gives wavelengths of the lines observed in the
visible hydrogen spectrum is ‘

n2 8
A = 3645.6 [;{5"—4} x10-%cm (n = 3,4,5,...). (3.1)

Question 3-1: Verify that the Balmer formula predicts the three characteristic
wavelengths mentioned above.

In 1890, Rydberg saw that the Balmer formula could be written in such a way as to suggest more
lines in the hydrogen spectrum. It is straightforward to show that equation (3.1) can be written

as
1 _ A
X = 27430 [1 nz] cm
or
1 1 1
y = R [*2‘2' - E} (n = 3,4,5,...). (3.2)

where R is known as Rydberg's constant, and to be consistent with equation (3.1), it must equal
109,720 em1,
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Rydberg suggested that the Balmer formula was actually a specific case for a more general
formula of the form

1 1
=R |—= . - =n+1,n+2,...). 3.3
[n,z nz} o = n ) (3.3)

Indeed, in 1908 Lyman discovered the series that corresponds to n° = 1 with the corresponding
wavelengths in the ultraviolet regions. In 1908, Paschen discovered the series corresponding to
n’ = 3;in 1922, Brackett discovered the series corresponding to n’ = 4, and in 1924 Pfund observed
the series corresponding to n’ = 5.

Question 3-2: To which regions of the electromagnetic spectrum do the
emissions lines in each series correspond? (a) Paschen series; (b) Brackett
series; (c) Pfund series.

Attempts to Explain Atomic Emission Spectra

While the Rydberg formula correctly predicts the wavelengths of the lines in the various
series of the hydrogen spectrum, it was developed, in somewhat the same spirit as Planck's
blackbody formula, to match purely empirical observations. If our understanding of matter and
radiation is accurate, it should be possible to derive this relationship from purely theoretical
considerations. Since these emission lines occur from atomic processes, it is necessary to have
a clear model of atomic structure.

The earliest theory of atoms was proposed in 1803 by John Dalton. According to his
theory, all matter was composed of small, dense, indivisible particles of matter that resemble
tiny billiard balls. Dalton called these particles atoms. He proposed that each element was
composed of a different kind of atom. Furthermore, he proposed that the varying properties of
different elements was due to the differences in their constituent atoms. While Dalton's theory
provided a satisfactory explanation for the mass relationships in chemical reactions, it could not
explain why atoms combined in certain ratios in reactions, nor could it explain atomic emission
spectra.

During the nineteenth century, a number of experiments involving electric
decomposition of solutions and electric decomposition of gases in sealed tubes indicated that
atoms were divisible, and that they were composed of electrically charged particles. The
charged particles were later called electrons and protons.

The first reasonable model of atomic structure was proposed by J. J. Thomson (1856 -
1940). He proposed that atoms consist of solid positively charged spheres with electrons dispersed
throughout the volume of positive charge much like plums in plum pudding or raisins in a raisin
cake. For obvious reasons, Thomson's model became known as the "plum pudding” or "raisin
cake” model. With this model, Thomson was somewhat successful in providing a qualitative
explanation for atomic emission spectra. In the lowest possible state, the electrons would be fixed
in some equilibrium position. In materials at high temperatures, the electrons would vibrate
about their equilibrium positions due to thermal motion. According to classical radiation
theory, any accelerated charge will radiate electromagnetic radiation; thus, a vibrating electron
would emit radiation at its vibrational frequency. ‘



Question 3-3: Suppose that an electron in a raisin cake atom vibrates about
its equilibrium position in simple harmonic motion with frequency 3.0 x 1015 Hz.
(a) What is the wavelength of the emitted radiation? (b) To which region of the
electromagnetic spectrum does this radiation correspond?

Although Thomson's model did provide a qualitative explanation for emission spectra,
quantitative agreement was clearly lacking (see for example, Eisberg and Resnick’'s text,
Example 4-1). In 1911, Lord Ernest Rutherford provided conclusive evidence that Thomson's
model was structurally incorrect. In a series of experiments in which Rutherford bombarded
thin sheets of gold foil with alpha particles, Rutherford concluded that

1. atoms were composed of mostly empty space, and

2. the positive charge was concentrated in a small dense
region which he called the nucleus.

3. The negatively charged electrons orbit the nucleus and the
region over which they orbit constitutes the "volume” of the
atom.

The details of Rutherford's experiments, as well as his proposed theory based on those
experiments are described in sections 4-1 and 4-2 of Eisberg and Resnick’'s text. The main
point, though, is that the concept of the nuclear atom had been born. Rutherford's predictions
based on a detailed theory of a point nucleus was completely verified in 1913 in the celebrated
experiments of Geiger and Marsden.

Unfortunately, Rutherford's nuclear atom could not be explained on the basis of classical
physics. The argument is straightforward. Any orbiting electron is accelerated. Accelerated
charges radiate (and therefore give off energy). As an accelerated charge continues to radiate,
its orbit would become smaller as its energy decreases, and it would eventually spiral into the
nucleus. In other words, a Rutherford atom would collapse. To make matters worse, the
collapse would occur over a very "short" time compared those of human comprehension - about
10-10s. The observed stability of our universe (it is at least stable on that time scale) indicates a
flaw in the Rutherford model, or in our understanding of matter and radiation, or in both.

In 1913 Neils Bohr (1885 - 1962) used Rutherford's concept of the "nuclear atom," ideas
from Planck’'s quantum explanation of radiation, and a set of ad hoc postulates to development a
model of atomic structure that enabled him to derive the Rydberg formula for the hydrogen atom
and all hydrogen-like species (that is, species with one valence electron, He*, Litt, etc.).

3.2 The Bohr Atom

Geiger and Marsden's experiments clearly indicated that the basic structure of
Rutherford's nuclear atom was consistent with experimental evidence. The main problem with
Rutherford's model was that it was inconsistent with classical radiation theory -- a theory
which we have seen is inadequate to explain both blackbody radiation and the photoelectric
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effect. To circumvent the problems that arose from classical theory and to incorporate the ideas
of quantization proposed by Planck and Einstein, Bohr made the following postulates:

1. An atomic system possesses a number of permitted states in which no
emission of energy radiation takes place, even if the particles are in motion
relative to each other (even though such an emission is to be expected in
ordinary electrodynamics).

2. The dynamical equilibrium of the system in these permitted states is
governed by the ordinary laws of mechanics, while these laws do not hold for
the transition from one permitted states to another.

3. Any emission or absorption of radiation will correspond to the transition
between two permitted states. The radiation emitted during such a
transition is homogeneous and the frequency is determined by the relation

hv = Ey - E3

where & is Planck's constant and E1 and E; are the energies of the system in
the two permitted states.

4. The only permitted states of a system consisting of an electron rotating
around a positive nucleus are those for which the orbital angular momentum
of the electron is an integral multiple of 2/27 where & is Planck's constant,

Essentially, Bohr's first postulate accounts for the fact that atoms do not collapse. It simply
states that classical electrodynamics does not apply to atoms. The second postulate states that in
the "allowed" states of the system, classical mechanics can be applied. The third postulate
describes the only instance in which an atom will radiate and incorporates the Einstein
quantization condition. The fourth postulate says that the angular momentum of the electrons in
an atom are quantized.

Bohr's postulates seem to provide a plausible qualitative explanation for the existence of
line spectra. Each element has a unique spectrum because each element is composed of atoms
with different permitted states that selectively follow rules of classical physics. A spectral line
will be produced when an excited electron drops from a permitted state of higher energy to one
with lower energy, thereby emitting electromagnetic radiation of a specific frequency and
wavelength. We now see if there is quantitative agreement between Bohr's predictions for the
wavelength of the emitted radiation and the Rydberg formula.

Quantitative Predictions of the Bohr Model

We will consider a hydrogenic species as a z it
single electron of mass m, charge - e in a circular . .
orbit of radius r about an infinitely massive ' r \
nucleus composed of Z protons, and thereby having
charge +Ze.

- -
- -

The classical picture of such a system is ' ‘
illustrated in figure 3-1 with the sizes of both the . d
nucleus and the electron greatly exaggerated. . .-

- ———



If this system obeys classical mechanics, then the centripetal force required to
keep the electron in its circular orbit about the nucleus must be provided by the Coulombic
attraction between the nucleus and the electron, or

muv? kZe?

r = rz (3.4)
where b = (4mey)! is the electric constant of free space.
- It follows from equation (3.4) that the kinetic energy, 7, of the electron is given by
kZe?
L2 = 228 (3.5)

2r

The electrical potential energy, V, of the electron in this orbit is given by - e® where @ is the
electric potential caused by the nucleus at the location of the electron:

2
ced = -5’——-?—‘?— (3.6)

The total energy of the system is, from equations (3.5) and (3.6)

E=T+V-=- 3.7

Z2r

Equation (3.7) gives us the energy of an electron in such a system at any distance r from the
nucleus. Thus far, the approach has incorporated only classical mechanies and Coulomb's law
(postulate 2). In Bohr's theory, however, not all values of r are permissible. The only
permissible values of r are those for which the orbital angular momentum of the electron is
quantized as proposed by postulate 4.

We will now proceed to find the allowed values of r. The orbital angular momentum, L
of the electron is mvr. Using equation (3.4) once again, we find

mur = NkZmre? .

According to postulate 4, this quantity must equal an integral multiple of A/27n:

NkZmre2 = n é‘;c— (n =1,23,..) (3.8

Since this particular combination of Planck's constant divided by 2n appears throughout all
areas of quantum physics, it is reasonable to define a new quantity i = #/2n. Equation (3.8)
then becomes

NkZmre2 = n #. (n=123,.) (39

Solving equation (3.9) for r yields an expression for the permissible or allowed values of r:



n2h2 n=123.) (31
= — n=123,.. .
n kZme? 0)
Since each permissible value of r depends on a particular value of n, the value of n is usually
used as a subscript for identification purposes.

When equation (3.10) is substituted into equation (3.7), we see that the electron is
permitted only certain energy values, and these are the energies of the permitted states of the
atomic system:

R2ZZme?
En = - W n = 1,2,3,..) (3.11)

In other words, Bohr's postulate of angular momentum quantization leads to energy
quantization. Each permitted state of the hydrogen atom system is characterized by a definite
energy determined by equation (3.11). The integer n is called the quantum number of the state
and is used to identify the state. The state corresponding to n = 1 has energy E1 and is called the
ground state of the system. The state corresponding to n = 2 has energy E; and is called the first
excited state of the system. The states corresponding the n = 3,4, 5, ... are called the second,
third, and fourth excited states and so on. The energy of the system is said to be quantized
because it can change only by discrete amounts. The only permitted energy values of this
system are E1, Eg, E3, ... with all other value excluded.

Question 3-4: What is the significance of the minus sign in equation (3.11)?

How does this model explain the characteristic lines in atomic emission spectra? To answer
this question, suppose that an atomic electron begins in the permitted state with energy E; and
drops to a state of lower energy E|. According to postulate 3, the atom will emit electromagnetic
radiation of frequency v, where

Ey, - E
- 2h1

Using expressions for E{ and E; obtained from equation (3.11) we obtain

R2Z2med 1 1
= ——— ] 3.12
4nfi 3 [n 2 nzz} ( )
If it is valid to treat this radiation classically, v = ¢/, and we have
1 272 4 1
1 _k2Z°’me” [_5 i Jﬂ , (3.13)
A dne # 3 ni ng

which bears a remarkable resemblance to the Rydberg formula that was based on purely
empirical observations.



Question 3-5: (a) What is the numerical value of the coefficient of the
bracketed terms in equation (3.13) for the case Z= 1 (atomic hydrogen)?
{b) What is the physical significance of this coefficient?

The Rydberg constant for hydrogen, as determined by the Bohr theory, is 109677.578 + 0.012 cm-!,
which is in agreement with spectroscopic observations; Rydberg's original value was slightly
higher.

Corrections for Finite Nuclear Mass and Motion of the Nucleus

If your computations for Question 3-5 were correct you should have obtained a value of
109737.318 em-! for the coefficient of the bracketed terms. Clearly, this value is in disagreement
with the value of the Rydberg constant quoted above. The reason for the discrepancy lies in our
choice of model for a Bohr atom. In our calculation, we assumed that the nucleus was infinitely
massive; in other words, we neglected the motion of the nucleus during one revolution of the
electron. The nucleus of a hydrogen atom consists of a single proton. The mass of a proton is
about 1836 times greater than that of an electron. We would expect that the nuclear motion should
be small compared to that of the electron over one revolution. To first approximation this is true
and we have a fairly good model. Even at the turn of the century, however, atomic spectroscopy
could be performed to a level of precision that would produce discrepancies with our model.

The main features of our model are correct and consistent with the postulates of Bohr. To
obtain agreement with spectroscopic measurement, however, we must consider the finite mass of
the nucleus and its resulting motion.

The classical motion of two particles of mass m and m, some distance r apart, takes
place about a point called the center of mass of the system. If the center of mass is at rest, the total
energy of the system of two particles is the same as that of a fictitious particle called the relative
particle, which has mass (called the reduced mass)

mym3

my + mg (3.14)

u,:

Question 3-6: (a) What is the reduced mass of the electron-proton system
that makes up the hydrogen atom? (b) How does this compare with the mass
of the electron?

The problem is equivalent then to that of a particle of reduced mass ¢ which orbits the fixed center
of mass at a distance r. In other words, the energy of a Bohr atom is the same as that of the
relative particle of reduced mass given by equation (3.14) that orbits a fixed point (the center of
mass) at a distance r. Note that the distance between the electron and the nucleus is the same as
the radial orbit of the relative particle about the center of mass.

Question 3-7: How could we modify equation (3.13) to include the finite
nuclear mass without redoing the calculation?

Question 3-8: How much error is introduced in the ground state energy of
the hydrogen atom by using the electron mass instead of the reduced mass?




It can be shown that all of the results of the previous section are valid if the electron mass m is
everywhere replaced by the reduced mass u of the hydrogenic system under consideration. The
permitted energy levels of any hydrogenic system are given by

k222 et

on2 f2 (n =1,23,.) (3.15)

En = -

and the corresponding relationship that determines the wavelength of the radiation emitted
when the electron drops from any level n; to any lower level ny is

1 k2Z2pe4 1 1}
s kTatpe 2 L 1
3 i 73 [nlz no? (3.16)

5,

The combination ke%/ﬁc is a dimensionless number, very close to 1/137. It is called the fine
structure constant and is denoted by the symbol . Then, equation (3.16) can be expressed as

1 1

1

where R is the Rydberg constant for the hydrogenic species with reduced mass u and nuclear
charge Z:

Z2uce?a?

2 he (3.18)

R =

The Hydrogen Spectrum

One of the great successes of the Bohr model of atomic structure was its predictions of the
spectrum of the hydrogen atom. Equation (3.15) can be written as follows:

MCZ alz?
2 n 2

E, = -

511x10° eV 1 22
- 2 137 n 2

Z2 136 eV
R
Thus, for the hydrogen atom (Z = 1), the ground state energy is - 13.6 eV. Since this is the state
normally occupied by the electron, this is also the ionization energy, or the work required to free
the electron. The excited states of the hydrogen atom have energies - 13.6/4 eV, - 13.6/9 eV, and
so on. These values are in agreement with experiment.

It is customary to display these graphically in an energy level diagram as shown in
Figure 3-2. The horizontal axis has no physical meaning. The vertical axis shows the values of
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the allowed energies with the lowest energy on the bottom. In practice, such diagrams are
usually drawn to scale along the vertical axis. Also shown in Figure 3-2 are transitions that
give rise to the first four lines in each of the Lyman, Balmer, and Paschen Series.

0
1
YYVY - - 13.6/9 eV
l Paschen Series
Yyvy S 13.6/4 eV
Balmer Series
\AAAI -136¢eV

Lyman Series

Figure 3-2

3.3 The Franck-Hertz Experiment - Direct Evidence of Discrete Energy Levels

A correct interpretation of Planck's blackbody formula, as well as Bohr's atomic theory,
predict that electrons in cavity walls and in atoms possess quantized energy states.
Furthermore, the discrete frequencies in atomic spectra provides compelling evidence that
atoms possess discrete energy levels, provided that Einstein's equation, E = Avis accepted.
Direct confirmation of the quantization of atomic energy states was presented by James Franck
and Gustav Hertz in 1914.

In their celebrated experiment, Franck and Hertz investigated the effect of collisions
between electrons and the atoms of mercury vaporl. While radiation was not involved in the
transfer of energy between the electrons and the atoms, the results of their experiment showed
that the electrons lost energy only in discrete amounts through inelastic collisions with the
atoms. In 1925, Franck and Hertz were awarded the Nobel Prize for their efforts, and their
contribution to the field of quantum physics. Ironically, Franck once explained in a filmed
presentation that when he and Hertz performed the original experiment, they had not yet heard of
Bohr's atomic theory.

1James Franck and Gustav Hertz, Verh. Dtsch. Phys. Ges. 16, 512 (1914)
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Figure 3-3 shows the apparatus
used by Franck and Hertz in their
famous experiment. Electrons from a
hot cathode C are accelerated through
mercury vapor toward grid G. The I

Cathode, C Grid, G

S~

Anods, A

electrons that pass through the grid can

reach the anode A provided that they

have sufficient kinetic energy to

overcome a small retarding potential

between the grid and the anode. The /'
resistance of the apparatus is adjustable Vapor-filled o

so that the accelerating voltage between tube Q/ <A>
the cathode and the grid, Vg can be
increased or decreased in a continuous

fashion. The circuit contains a volt IMW\!
meter and an ammeter to measure the

grid voltage Vg, and the anode current

respectively. If there were no mercury
vapor present, an increase in the grid - { ' I ' I ‘ I F—' |————
voltage Vg would always result in an

increase in the anode current, as it will
in any vacuum tube. Figure 3-3

Mercury vapor

IIIIIIIIIIIIHH‘

As shown in Figure 3-4, when the grid voltage is increased from zero, the anode current
increases, as expected, until a grid voltage close to 5.0 V is reached. If the grid voltage is
increased beyond this value, the current drops abruptly. If the grid voltage is still increased the
current again rises until a grid voltage close to 10 V is reached. If the grid voltage is increased
beyond 10 V, another abrupt drop is observed in the !
anode current. How do these observations imply
the existence of discrete energy levels?
Apparently, when the kinetic energy of the
electrons is lower than 5.0 eV, they undergo elastic
collisions with the atoms of the mercury vapor
thereby retaining their kinetic energies. These
electrons have enough kinetic energy to overcome
the retarding potential and reach the anode thereby
causing current to flow through the anode branch of
the circuit. At a kinetic energy of 5 eV, however, | A |
the collisions with the vapor atoms results in an 5 10 15
inelastic collision in which the electrons lose their
kinetic energy to the atoms. After such a collision,
the electrons do not possess enough kinetic energy
to overcome the retarding potential, so they cannot Figure 3-4
reach the anode. Apparently, inelastic collisions
excite the atoms of the vapor.

Current, (arbitrary units)

Grid Voltage (V)

If the energy levels of the atom are quantized, then the atom can only absorb certain
discrete amounts of energy. These results seem to indicate that the first excited state of the
mercury atoms is about 5 eV above the ground state. If an electron with less than 5 eV collides
with a mercury atom, none of the energy can be absorbed. If an electron with energy 5 eV of more
collides with a mercury atom, then the energy will be absorbed and excite the atom. These
conclusions are in agreement with the spectroscopic evidence that the first excited state in
mercury is 4.86 eV above the ground state,
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Question 3-9: Suppose an electron with 6 eV collides with a mercury atom.
What happens to the extra energy?

Question 3-10: In the actual Franck-Hertz experiment, the first drop in current
occurs at a grid voltage 6.6 or 6.7 V while subsequent drops occur at 5 V
intervals. That is, the first drop in the anode current occurs at 6.7 V. The current
is then observed to drop around 11.7 V, 16.7 V, etc. Explain.

3.4 Quantization and the Wilson-Sommerfeld Rule

Although Bohr's theory was in excellent agreement with experiment for the hydrogen
atom, and the Franck-Hertz experiment confirmed the existence of quantized atomic energy
states, the appearance of quantization on a microscopic level was still a mystery. In 1915, W.
Wilson and A. Sommerfeld provided a theoretical explanation. They independently proposed
that quantization will be apparent in any system for which the coordinates are periodic functions
of time. Formally, the Wilson-Sommerfeld quantization rule states that for any physical
system for which the coordinates are periodic functions of the time, there is a quantization rule

§pqdq = ngh (3.19)
C

where q is the coordinate , Pq is the corresponding momentum, ngis an integer called a quantum
number, and h is Planck’'s constant and the integration is carried out over one cycle of the
motion. Note that this rule can be applied to the electrons in the walls of a blackbody cavity, as
well as to the electron in a Bohr atom. Both systems represent electrons that undergo periodic
motion (simple harmonic in the former case, and uniform circular motion in the latter case). It
will be left as a student exercise to show that Planck's quantization of the total energy of the
electrons and Bohr's quantization of the angular momentum of an orbiting electron are special
cases of (3.19).

3.5 The Correspondence Principle

As students of physics, you are now in an awkward position. You have two different
radiation laws, each of which seems to work in certain circumstances. Classical
electrodynamics predicts one radiation law for the radiation emitted from an accelerated charge
which works well in a variety of situations. It works quite well, for example, in predicting the
radiation field both near to and far from a transmitting dipole antenna. Yet, it fails miserably
if one tries to use it to predict the radiation emitted from an electron in a Bohr atom. The obvious
questions at this point is "how do we know when to use classical electrodynamics and when to
use Bohr's postulates?”

Bohr answered this question in 1923 when he stated an auxiliary postulate called the
correspondence principle. This principle states that the result of any quantum theory must
approach the classical result in the limit in which the corresponding quantum number
approaches infinity. Eisberg and Resnick carry through the correspondence for a harmonic
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oscillator in section 4-11 of their text; the correspondence principle is applied to the hydrogen
atom in Example 4-11.
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3.6 The Demise of the Old Quantum Theory

Bohr's atomic theory showed great promise with its prediction of the hydrogen spectrum
that agreed with experiment. Unfortunately, it failed miserably when it was applied to neutral
helium, the next element in the periodic table. It also became apparent that when the hydrogen
spectrum is examined closely, the spectral lines are actually a set or multiplet of two or more
lines. Bohr's theory had no explanation for this fine structure. In 1916, A. Sommerfeld
attempted to explain the fine structure of hydrogen in terms of elliptical orbits. Although
Sommerfeld's theory was somewhat successful for the hydrogen atom, his success was purely
coincidental. Like Bohr's original theory, it could not be extended to multi-electron atoms,
While the Wilson-Sommerfeld rules do lead to a number of successful predictions, they can only
be applied to periodic systems; there are many systems of physical interest that are not periodic
in time. It became clear between the years 1920 and 1925, that a more comprehensive theory must
be proposed to explain and predict the behavior of systems that exhibit energy quantization. The
historical development of the quantum theory of atoms can be summarized somewhat generally
as follows:

1913 - 1920 The origin and (extensive) application of the old
quantum theory of the atom

1920 - 1925 The decline of the old quantum theory

1925 - 1926 The development of the new quantum mechanics and
its application to simple physical systems

1927 - The application of quantum mechanics to chemical systems

We now proceed to examine the events and theories that led to the development of modern
quantum mechanics and its application to atomic systems.
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