Second Semester Equations Sheet AP Physics B

1	Speed of Light	$c = f \lambda$
2	Speed of a wave on a string	$v = \sqrt{\frac{F}{\mu}}$
		$v = \sqrt{\frac{1}{u}}$
3	Harmonic wave equation	$y(x,t) = y_0 \sin[2\pi((t/T) + (x/\lambda))]$
4	Harmonic frequencies for strings	
4	Transione frequencies for surings	$f_n = \frac{n}{2L} \sqrt{\frac{F}{\mu}}$
		$^{"}$ $2L$ $\bigvee \mu$
5	Harmonic frequencies for open air columns	f n
		$I_{n} = \frac{1}{2L}V$
6	Harmonic frequencies for closed air columns	, n
		$f_{n} = \frac{n}{2L} V$ $f_{n} = \frac{n}{4L} V$
7	Doppler effect	$f' = f\left(\frac{v \pm v_R}{v \pm v_S}\right)$
		$f'=f\left \frac{v \pm v_R}{v + v_R}\right $
		` ~ /
8	Beat frequency	$\begin{aligned} f_b &= f_2 - f_1 \\ \theta_i &= \theta_R \end{aligned}$
9	Law of reflection	
10	Index of refraction	n = c/v
11	Snell's law (1)	$n_1 \sin \theta_i = n_2 \sin \theta_{R'}$
12	Snell's law (2)	$\lambda_2 \sin \theta_i = \lambda_1 \sin \theta_{R'}$
13	Critical angle for total internal reflection	$\sin \theta_{\rm c} = n_2/n_1$
14	Optics equation	$1/f = 1/d_0 + 1/d_i$
15	Spherical mirror equation	f = R/2
16	Magnification	$\mathbf{M} = -[\mathbf{d}_{\mathbf{i}}/\mathbf{d}_{0}]$
17	Lensmaker's equation	$1/f = [(n/n_{fluid} - 1) (1/R_1 - 1/R_2)]$
18	Double slit constructive equation	$Y_{\rm m} = ({\rm m}\lambda {\rm L}/{\rm d})$
19	Single slit destructive equation	$Y_{\rm m} = (m\lambda L/a)$
20	Thin film in air (constructive)	$2t = (m+1/2)\lambda_{\text{film}}$
21	Diffraction grating (constructive)	$d\sin\theta = m\lambda$
22	Coulomb's Law	$F = kqq/r^2$
23	Electric field	$E = kq/r^2$
24	Change in electric potential energy	$\Delta U = \text{qed}$
25 26	Electric potential difference Electric potential difference (uniform field)	$\Delta V = \Delta U/q$ $\Delta V = -Ed$
27	Electric potential difference (circuit)	
28	Work done by electric field	$V_{AB} = V_A - V_B$ $W = - \Delta U$
29	Capacitance	C = Q/V
30	Parallel plate capacitor	$C = \varepsilon_0 A/d$
31	Capacitors in series	$\frac{C - c_0 A / d}{1 / C_{eq}} = 1 / C_1 + 1 / C_2 + \dots$
32	Capacitors in parallel	$C_{eq} = C_1 + C_2 +$
33	Dielectric constant	$K = C/C_o$
34	Current	I = Q/t
35	Drift velocity	$v_{d} = I/(nqa)$
36	Ohm's law	V = IR
50	OIIII D IUVV	, – III

37	Resistivity	$R = \rho L/A$
38	Electrical power	P = IV
39	Resistors in series	$R_{eq} = R_1 + R_2 + \dots$
40	Resistors in parallel	$1/R_{eq} = 1/R_1 + 1/R_2 + \dots$
41	Capacitive time constant	$\tau = RC$
42	Capacitive energy storage	$E = \frac{1}{2} CV^2$
43	Magnetic force on a charged particle	$F_{\rm B} = qv B \sin \theta$
44	Charged particle path in a B-field	r = mv/qB
45	Accelerating voltage	$qV = 1/2 \text{ mv}^2 $
46	Crossed field undeflected beam	v = E/B
47	Magnetic force on a conductor	$F = BILsin\theta$
48	Torque on a loop	τ= NBIAsinθ
49	B-Field around a conductor	$B = \mu_o I/2\pi r$
50	Magnetic flux	$\Phi = BA\cos\theta$
51	Faraday's law of induction	$\xi = -N(\Delta\Phi/\Delta t)$
51	Quantized energy	$E_n = nhf$
53	Momentum of a photon	$p = h/\lambda$
54	Photoelectric effect (1)	$K_{max} = hf - \phi$
55	Photoelectric effect (2)	$qV_o = hf - \varphi$
56	Bohr's assumption	$mvr = nh/2\pi$
57	Electron radius in hydrogen (Bohr)	$r = n^2 a_o$
58	Electron energy level in hydrogen (Bohr)	$E_{\rm n} = -13.6 {\rm ev/n}^2$
59	Emission/absorption wavelength (Bohr)	$1/\lambda = R(1/n_f^2 - 1/n_i^2)$
60	Debroglie wavelength	$\lambda = h/mv$
61	X-ray production	$\lambda_{\min} = hc/eV$
62	mass defect	$\Delta E = \Delta mc^2$