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26.2 The Principle of Galilean
Relativity
Most of our everyday experiences and observations have to do with objects that move at 263  The Speed of Light
speeds much less than the speed of light. Newtonian mechanics was formulated to describe 26.4 The Michelson—Morley
the motion of such objects, and its formalism is quite successful in describing a wide range of

Xperim
phenomena that occur at low speeds. It fails, however, when applied to particles having 26.5 E,p . 'en;. o
speeds approaching that of light. ’ lnstem_s' rincipie
of Relativity

This chapter introduces Einstein’s theory of special relativity and includes a section on gen-

eral relativity. The concepts of special relativity often violate our common sense. Moving 26.6  Consequences of Special

clocks run slow, and the length of a moving meter stick is contracted. Nonetheless, the theory Relativity
has been rigorously tested, correctly predicting the results of experiments involving speeds ~ 26.7  Relativistic Momentum
near the speed of light. The theory is verified daily in particle accelerators around the world. 26.8 Relativistic Addition

of Velocities

26.1 INTRODUCTION 26.9 Relativistic Energy and

Experimentally, the predictions of Newtonian theory can be tested at high speeds the Equivalence of

by accelerating electrons or other charged particles through a large electric poten- M?SS CIL Er?ergy
tial difference. For example, it’s possible to accelerate an electron to a speed of 26.10 Za" _‘:":?cil,lmon and
nninHation

0.99¢ (where c is the speed of light) by using a potential difference of several mil-
lion volts. According to Newtonian mechanics, if the potential difference is 26.11 General Relativity
increased by a factor of 4, the electron’s kinetic energy is four times greater and its
speed should double to 1.98c. However, experiments show that the speed of the
electron —as well as the speed of any other particle that has mass-—always remains
r - less than the speed of light, regardless of the size of the accelerating voltage.
: The existence of a universal speed limit has farreaching consequences. It
means that the usual concepts of force, momentum, and energy no longer apply
for rapidly moving objects. Less obvious consequences include the fact that
observers moving at different speeds will measure different time intervals and dis-
placements between the same two events. Newtonian mechanics was contradicted
by experimental observations, so it was necessary to replace it with another theory.
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844 Chapter 26 Relativity

In 1905, at the age of 26, Einstein published his special theory of relativity.
Regarding the theory, Einstein wrote:

The relativity theory arose from necessity, from serious and deep contradictions in the old i
theory from which there seemed no escape. The strength of the new theory lies in the
consistency and simplicity with which it solves all these difficulties, using only a few very
convincing assumptions.1

Although Einstein made many other important contributions to science, his
theory of relativity alone represents one of the greatest intellectual achievements
of all time. With this theory, experimental observations can be correctly predicted
over the range of speeds from v =0 to speeds approaching the speed of light.
Newtonian mechanics, which was accepted for more than 200 years, remains valid,
but only for speeds much smaller than the speed of light.

At the foundation of special relativity is reconciling the measurements of two
observers moving relative to each other. Normally, two such observers will measure
different outcomes for the same event. If the measurement is the speed of a car,
for example, an observer standing on the road will measure a different speed for
the car than an observer in a truck traveling at speed v relative the stationary
observer. Special relativity is all about relating two such measurements—and this
rather innocuous relating of measurements leads to some of the most bizarre con-
sequences in physics!

BRI ———
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26.2 THE PRINCIPLE OF GALILEAN RELATIVITY 1

In order to describe a physical event, it's necessary to choose a frame of reference. For
example, when you perform an experiment in a laboratory, you select a coordi-
nate system, or frame of reference, that is at rest with respect to the laboratory.
However, suppose an observer in a passing car moving at a constant velocity with
respect to the lab were to observe your experiment. Would the observations made
by the moving observer differ dramatically from vours? That is, if you found
Newton’s first law to be valid in your frame of reference, would the moving
observer agree with you?

According to the principle of Galilean relativity, the laws of mechanics must
be the same in all inertial frames of reference. Inertial frames of reference are
those reference frames in which Newton's laws are valid. Practically, such frames
are those in which objects subjected to no forces move in straight lines at constant
speed—thus the name “inertial frame” because objects observed from these
frames obey Newton’s first law, the law of inertia. For the situation described in the
previous paragraph, the laboratory coordinate system and the coordinate system
of the moving car are both inertial frames of reference. Consequently, if the laws
of mechanics are found to be true in the iaboratory, then the person in the car
must also observe the same laws.?

Consider an airplane in flight, moving with a constant velocity, as in Figure 26.1a.
If a passenger in the airplane throws a ball straight up in the air, the passenger
observes that the ball moves in a vertical path. The motion of the ball is precisely
the same as it would be if the ball were thrown while at rest on Earth. The law of
gravity and the equations of motion under constant acceleration are obeyed
whether the airplane is at rest or in uniform motion.

Now consider the same experiment when viewed by another observer at rest on
Earth. This stationary observer views the path of the ball in the plane to be a
parabola, as in Figure 26.1b. Further, according to this observer, the ball has a
velocity to the right equal to the velocity of the plane. Although the two observers
disagree on the shape of the ball’s path, both agree that the motion of the ball
obeys the law of gravity and Newton's laws of motion, and even agree on how long

!A. Finstein and L. Infeld, The Evalution of Physics (New York: Simon and Schuster, 1961). i
I\What is an example of a noninertial frame? A frame undergoing wranslational acceleration or a frame rotating with
respect to the two inerdal frames just mentioned.
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the ball is in the air. We draw the following important conclusion: There is no
preferred frame of reference for describing the laws of mechanics.

26.3 THE SPEED OF LIGHT

It’s natural to ask whether the concept of Galilean relativity in mechanics also applies
to experiments in electricity, magnetism, optics, and other areas. Experiments
indicate the answer is no. For example, if we assume that the laws of electricity and
magnetism are the same in all inertial frames, a paradox concerning the speed
of light immediately arises. This can be understood by recalling that, according
to electromagnetic theory, the speed of light always has the fixed value of
2.997924 58 X 108 m/s in free space. But this is in direct contradiction to
common sense. For example, suppose a light pulse is sent out by an observer in a
boxcar moving with a velocity V (Fig. 26.2). The light pulse has a velocity €
relative to observer S’ in the boxcar. According to Galilean relativity, the speed of
the pulse relative to the stationary observer S outside the boxcar should be ¢ + v.
This obviously contradicts Einstein’s theory, which postulates that the velocity of
the light pulse is the same for all observers.

In order to resolve this paradox, we must conclude that either (1) the addition
law for velocities is incorrect or (2) the laws of electricity and magnetism are not
the same in all inertial frames. Assume that the second conclusion is true; then a
preferred reference frame must exist in which the speed of light has the value ¢,
but in any other reference frame the speed of light must have a value that is
greater or less than c. It’s useful to draw an analogy with sound waves, which prop-
agate through a medium such as air. The speed of sound in air is about 330 m/s
when measured in a reference frame in which the air is stationary. However, the
speed of sound is greater or less than this value when measured from a reference
frame that is moving with respect to the air.

In the case of light signals (electromagnetic waves), recall that electromagnetic
theory predicted that such waves must propagate through free space with a speed

26.3 The Speed of Light 845

Figure 26.1 (a) The observer on
the airplane sees the ball move in a
vertical path when thrown upward.
(b) The observer on Earth views the
path of the ball to be a parabola.

Figure 26.2 A pulse of light is sent
out by a person in a moving boxcar.
According to Newtonian relativity, the
speed of the pulse should be € + ¥
relative to a stationary ohserver.
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Figure 26.3 If the speed of the
ether wind relative to Earth is v, and
cis the speed of light relative to the
ether, the speed of light relative to
Earth is (a) ¢ + vin the downwind
direction, (b) ¢ — vin the upwind
direction, and (c¢) VeZ ~ v2in the
direction perpendicular to the wind.

equal to the speed of light. However, the theory doesn’t require the presence ofa
medium for wave propagation. This is in contrast to other types of waves, such as
water and sound waves, that do require a medium to support the disturbances, In
the 19th century, physicists thought that electromagnetic waves also required z .
medium in order to propagate. They proposed that such a medium existed and
gave it the name luminiferous ether. The ether was assumed to be present every-
where, even in empty space, and light waves were viewed as ether oscillations.
Further, the ether would have to be a massless but rigid medium with no effect onn .
the motion of planets or other objects. These are strange concepts indeed. In
addition, it was found that the troublesome laws of electricity and magnetism . i
would take on their simplest forms in a special frame of reference at rest with
respect to the ether. This frame was called the absolute frame. The laws of electricity
and magnetism would be valid in this absolute frame, but they would have to be -

modified in any reference frame moving with respect to the absolute frame.

As a result of the importance attached to the ether and the absolute frame, it

became of considerable interest in physics to prove by experiment that they

existed. Since it was considered likely that Earth was in motion through the ether, -

from the view of an experimenter on Earth, there was an “ether wind” blowing

through his laboratory. A direct method for detecting the ether wind would use an
apparatus fixed to Earth to measure the wind’s influence on the speed of light. If v
is the speed of the ether relative to Earth, then the speed of light should have its -
maximum value, ¢ + v, when propagating downwind, as shown in Figure 26.3a.
Likewise, the speed of light should have its minimum value, ¢ — v, when propagat- ¢ :
ing upwind, as in Figure 26.3b, and an intermediate value, (62 = v2)1/ 2 in the
direction perpendicular to the ether wind, as in Figure 26.3c. If the Sun were =
assumed to be at rest in the ether, then the velocity of the ether wind would be -

equal to the orbital velocity of Farth around the Sun, which has a magnitude of
approximately 3 X 10* m/s. Because ¢ = 3 X 108 m/s, it should be possible to

detect a change in speed of about 1 part in 10# for measurements in the upwind

or downwind directions. However, as we will see in the next section, all attempts to

detect such changes and establish the existence of the ether (and hence the

absolute frame) proved futile.

In conclusion, we see that the second hypothesis in our introduction to this sec- ;
tion is false—and we now believe that the laws of electricity and magnetism are

the same in all inertial frames. It is the simple classical addition laws for velocities
that are incorrect and must be modified, as shown in Section 26.8.

26.4 THE MICHELSON-MORLEY EXPERIMENT

The most famous experiment designed to detect small changes in the speed of
light was first performed in 1881 by Albert A. Michelson (1852-1931) and later
repeated under various conditions by Michelson and Edward W. Moriey
(1838-1923). We state at the outset that the outcome of the experiment contra
dicted the ether hypothesis.

The experiment was designed to determine the velocity of Earth relative to the
hypothetical ether. The experimental tool used was the Michelson interferometer,
which was discussed in Section 25.7 and is shown again in Active Figure 26.4. Arm
2 is aligned along the direction of Earth’s motion through space. Earth’s moving
through the ether at speed v is equivalent to the ether’s flowing past Earth in the
opposite direction with speed v. This ether wind blowing in the direction opposite
the direction of Earth’s motion should cause the speed of light measured in Earth
frame to be ¢ — v as the light approaches mirror My and ¢ + v after reflection,
where cis the speed of light in the ether frame.

The two beams reflected from M and M recombine, and an interference pat-
tern consisting of alternating dark and bright fringes is formed. The interference
pattern was observed while the interferometer was rotated through an angle of
90°. This rotation supposedly would change the speed of the ether wind along the
direction of arm 1. The effect of such rotation should have been to cause the
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26.4 The Michelson~Morley Experiment 847

fringe pattern to shift slightly but measurably; however, measurements failed to
show any change in the interference pattern! The Michelson-Morley experiment
was repeated at different times of the year when the ether wind was expected to
change direction, but the results were always the same: no fringe shift of the
magnitude required was ever observed.

The negative results of the Michelson—Morley experiment not only contradicted
the ether hypothesis, but also showed that it was impossible to measure the absclute
velocity of Earth with respect to the ether frame. However, as we will see in the next
section, Einstein suggested a postulate in the special theory of relativity that places
quite a different interpretation on these negative results. In later years, when more
was known about the nature of light, the idea of an ether that permeates all of
space was relegated to the theoretical graveyard. Light is now understood to be an
electromagnetic wave, which requires no medium for its propagation. As a result,
the idea of an ether in which these waves could travel became unnecessary.

Details of the Michelson—-Morley Experiment

As we mentoned earlier, the Michelson—Morley experiment was designed to
detect the motion of Earth with respect to the ether. Before we examine the details
of this historical experiment, it is instructive to consider a race between two air-
planes, as shown in Figure 26.5a. One airplane flies from point O to point A per-
pendicular to the direction of the wind, and the second airplane flies from point
O to point B parallel to the wind. We will assume that they start at O at the same
time, travel the same distance L with the same cruising speed ¢ with respect to the
~ wind, and return to O. Which airplane will win the race? In order to answer this
. question, we calculate the time of flight for both airplanes.

~ First, consider the airplane that moves along path I parallel to the wind. As it
- moves to the right, its speed is enhanced by the wind, and its speed with respect to
Earth is ¢ + v. As it moves to the left on its return journey, it must fly opposite the
wind; hence, its speed with respect to Earth is ¢ — v. The times of flight to the
* right and to the left are, respectively,

L L
and tL =

tp =

c+ v c— v

and the total time of flight for the airplane moving along path L is
| L L 2L

-+ =
c+ v c— v

H ipt+ it =

2L

=7 [26.1]

\1-=)

~ Now consider the airplane flying along path II. If the pilot aims the airplane
~ directly toward point 4, it will be blown off course by the wind and won't reach its
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ACTIVE FIGURE 26.4

According to the ether wind theory,
the speed of light should be ¢ — vas
the beam approaches mirror My and
¢ + v after reflection.

Physics:&Now™

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 26.4, where
you can adjust the speed of a fictitious
ether wind and observe the effect on
beams of light.

Figure 26.5 (a) If an airplane trav-
els from O to A with a wind blowing
to the right, it must head into the
wind at some angle. (b) Vector dia-
gram for determining the airplane’s
direction for the trip from Oto A.

(¢) Vector diagram for determining
its direction for the trip from A to O.
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destination. To compensate for the wind, the pilot must point the airplane into
the wind at some angle, as shown in Figure 26.5a. This angle must be selected sg-.
that the vector sum of € and ¥ leads to a velocity vector pointed directly toward A"
The resultant vector diagram is shown in Figure 26.5b, where V, is the velocity of

the airplane with respect to the ground as it moves from O to A. From the-
Pythagorean theorem, the magnitude of the vector V,is ‘

5 ¥
vu=\fc2—v =c \,l——2 o
¢

Likewise, on the return trip from A to O, the pilot must again head into the wind
so that the airplane’s velocity ¥, with respect to Earth will be directed toward O, as
shown in Figure 26.5¢c. From this figure, we see that

2

{ v
Uy = 62_“02:6 -7

c

The total time of flight for the trip along path Il is therefore

L L L L
lo=—+—= +
- vd ¢ ’J — 12_ c ‘J — f_
62 62
9L
= [26.2]
v? 58
c 1 - ——2—' =

Comparing Equations 26.1 and 26.2, we see that the airplane flying along path o
wins the race. The difference in flight times is given by e

2L 1 1

At=t = tp=—r T =
1-—5 =
c

This expression can be simplified by noting that the ratio of wind speed to plane*; 2
speed, v/¢, is usually much smaller than 1, and by using the following binomial '
expansions in v/ c after dropping all terms higher than second order: '

02 \-1 2
(1—'—2" =l+'—2—'

[4 c

2\-1/2 2
v 1l v
1 — — =1+ ——
( c2> 2 (2

and

The difference in flight times is therefore

L 2 e -
At~ for v/c<<1 [26.3]
c

The analogy between this airplane race and the Michelson—-Morley experiment .
is shown in Figure 26.6a. Two beams of light travel along two arms of an interfer-
ometer. In this case, the “wind” is the ether blowing across Earth from left to right
as Earth moves through the ether from right to left. Because the speed of Earth in
its orbital path is approximately 3 X 10* m/s, it is reasonable to use that value for
the speed of the ether wind. Notice in this case that v/c~1x 10"% << 1. The two
light beams start out in phase and return to form an interference pattern. We
assume that the interferometer is adjusted for parallel fringes and that a telescope
is focused on one of these fringes. The time difference between the two light
beams gives rise to a phase difference between the beams, producing an interfer-
ence pattern when they combine at the position of the telescope. The difference .
in the pattern is detected by rotating the interferometer through 90° in a horizon-
tal plane, so that the two beams exchange roles (Fig. 26.6b). This results in a net

4
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time shift of twice the time difference given by Equation 26.3. The net time differ-
ence is therefore

L 2
At = 2AL= 2; [26.4]
" The corresponding path difference is
2Lv?

Ad= cAtpee = —3 [26.5]
¢
~ In the first experiments by Michelson and Morley, each light beam was reflected
by the mirrors many times to give an increased effective path length L of about
11 meters. Using this value and taking v to be equal to 3 X 10* m/s gives a path
- difference of

_ 2(11m)(3.0 X 104 m/s)2

=992x 1077
(3.0 X 108 m/s)? 2.2 m

Ad

 This extra travel distance should produce a noticeable shift in the fringe pattern.
- Specifically, calculations show that if the pattern is viewed while the interferometer
' is rotated through 90°, a shift of about 0.4 fringe should be observed. The instru-
" ment used by Michelson and Morley was capable of detecting a shift in the fringe
~ pattern as small as 0.01 fringe. However, it detected no shift whatsoever in the fringe
paiiern. Since then, the experiment has been repeated many times by different
~ scientists under a wide variety of conditions and no fringe shift has ever been
" detected. The inescapable conclusion is that motion of Earth with respect to the
- ether can’t be detected.

'~ Many efforts were made to explain the null results of the Michelson-Morley
~ experiment and to save the ether frame concept and the Galilean addition law for
~ the velocity of light. All proposals resulting from these efforts have been shown to
“be wrong. No experiment in the history of physics has received such valiant efforts
- to explain the absence of an expected result as was the Michelson-Morley experi-
" ment. The stage was set for Einstein, who, at the age of only 26, solved the prob-
* lem in 1905 with his special theory of relativity.

' 26.5 EINSTEIN’S PRINCIPLE OF RELATIVITY

- In the previous section we noted the serious contradiction between the Galilean
- addition law for velocities and the fact that the speed of light is the same for all
~ observers. In 1905 Albert Einstein proposed a theory that resolved this contradic-
" tion but at the same time completely altered our notions of space and time. He
~ based his special theory of relativity on two postulates:

849

Figure 26.6 (a) Top view of the
Michelson-Morley interferometer,
where ¥ is the velocity of the ether
and L is the length of each arm.

(b) When the interferometer is
rotated by 90°, the role of each arm
is reversed.
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ALBERT EINSTEIN,
German-American Physicist
(1879-1955)

One of the greatest physicists of all time,
Einstein was born in Uim, Germany. In
1905, at the age of 26, he published four
scientific papers that revolutionized
physics. Two of these papers were con-
cerned with what is now considered his
most important contribution: the special
theory of refativity. In 1916, Einstein pub-
fished his work on the general theory of
relativity. The most dramatic prediction of
this theory is the degree to which light is
deflected by a gravitationai field. Measure-
ments made by astronomers on bright
stars in the vicinity of the eclipsed Sun in
1919 confirmed Einstein's prediction, and
as a result, Einstein became a world
celebrity. Einstein was deeply disturbed by
the development of quantum mechanics in
the 1920s despite his own role as a scien-
tific revolutionary. In particular, he could
never accept the probabilistic view of
events in nature that is a central feature of
quantum theory. The last few decades of
his fife were devoted to an unsuccessful
search for a unified theory that would com-
bine gravitation and electromagnetism.



850 Chapter 26 Relativity

Postulates of relativity » 1. The principle of relativity: All the laws of physics are the same in all iner-
tial frames. oy P

9. The constancy of the speed of light: The speed of light in a vacuum has -

the same value, ¢ = 2.99792458 X 108 m/s, in all inerdal reference

frames, regardless of the velocity of the observer or the velocity of the

source emitting the light.

The first postulate asserts that all the laws of physics are the same in all refer- .
ence frames moving with constant velocity relative to each other. This postulate is 4
a sweeping generalization of the principle of Galilean relativity, which refers only |
to the laws of mechanics. From an experimental point of view, Einstein’s principle J
of relativity means that any kind of experiment— mechanical, thermal, optical, or -
electrical—performed in a laboratory at rest, must give the same result when per-
formed in a laboratory moving at a constant speed past the first one. Hence, no . ..
preferred inertial reference frame exists, and it is impossible to detect absolute
motion. '

Although postulate 2 was a brilliant theoretical insight on Einstein's part in .
1905, it has since been confirmed experimentally in many ways. Perhaps the most
direct demonstration involves measuring the speed of photons emitted by particles \
traveling at 99.99% of the speed of light. The measured photon speed in this case -
agrees to five significant figures with the speed of light in empty space. ‘

The null result of the Michelson-Morley experiment can be readily understood.
within the framework of Einstein's theory. According to his principle of relativity,
the premises of the Michelson—-Morley experiment were incorrect. In the process N
of trying to explain the expected results, we stated that when light traveled against -
the ether wind its speed was ¢ — v. However, if the state of motion of the observer
or of the source has no influence on the value found for the speed of light, the S
measured value must always be c. Likewise, the light makes the return wip after -
reflection from the mirror at a speed of ¢, not at a speed of ¢ + v. Thus, the motion
of Earth does not influence the fringe pattern observed in the Michelson-Morley
experiment, and a null result should be expected.

If we accept Einstein’s theory of relativity, we must conclude that uniform rela- = |
tive motion is unimportant when measuring the speed of light. At the same time, |
we have to adjust our commonsense notions of space and time and be prepared .
for some rather bizarre consequences.

- ——

-

26.6 CONSEQUENCES OF SPECIAL RELATIVITY

Almost everyone who has dabbled even superficially in science is aware of some of
the startling predictions that arise because of Einstein’s approach to relative -
motion. As we examine some of the consequences of relativity in this section, we'll
find that they conflict with some of our basic notions of space and time. We will
restrict our discussion to the concepts of length, time, and simultaneity, which are
quite different in relativistic mechanics from what they are in Newtonian mechan-
ics. For example, in relativistic mechanics, the distance between two points and the
time interval between two events depend on the frame of reference in which they .
are measured. In relativistic mechanics, there is no such thing as absolute length or
Absolute length and absolute absolute time. Further, events at different locations that are observed to occur
time intervals are meaninglessin  simultaneously in one frame are not observed to be simultaneous in another frame
relativity. »  moving uniformly past the first.

Simultaneity and the Relativity of Time

A basic premise of Newtonian mechanics is that a universal time scale exists that is
the same for all observers. In fact, Newton wrote, “Absolute, true, and mathemati-
cal time, of itself, and from its own nature, flows equably without relation to any-
thing external.” Newton and his followers simply took simultaneity for granted. In
his special theory of relativity, Einstein abandoned that assumption.
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(a) (b)
Figure 26.7 Two lightning bolts strike the ends of a moving boxcar. (a) The events appear to be
simultaneous to the stationary observer at O, who is midway between A and B. (b) The events don't
appear to be simultaneous to the observer at 0’, who claims that the front of the train is struck before
the rear.

Finstein devised the following thought experiment to illustrate this point: a
boxcar moves with uniform velocity, and two lightning bolts strike its ends, as in
Figure 26.7a, leaving marks on the boxcar and the ground. The marks on the box-
car are labeled A’ and B', and those on the ground are labeled A and B. An
observer at O’ moving with the boxcar is midway between A’ and B’, and an
observer on the ground at O is midway between A and B. The events recorded by
the observers are the striking of the boxcar by the two lightning bolts.

The light signals recording the instant at which the two bolts struck reach
observer O at the same time, as indicated in Figure 26.7b. This observer realizes
that the signals have traveled at the same speed over equal distances, and so rightly
concludes that the events at A and B occurred simultaneously. Now consider the
same events as viewed by observer O'. By the time the signals have reached
observer O, observer O’ has moved as indicated in Figure 26.7b. Thus, the signal
from B’ has already swept past O’, but the signal from A’ has not yet reached 0.
In other words, O’ sees the signal from B’ before seeing the signal from A'.
According to Einstein, the two observers must find that light travels at the same speed.
Therefore, observer O’ concludes that the lightning struck the front of the boxcar
before it struck the back.

This thought experiment clearly demonstrates that the two events which appear
to be simultaneous to observer O do not appear to be simultaneous to observer O".
In other words,

Two events that are simultaneous in one reference frame are in general not
simultaneous in a second frame moving relative to the first. Simultancity
depends on the state of motion of the observer, and is therefore not an
absolute concept.

At this point, you might wonder which observer is right concerning the two
events. The answer is that both are correct, because the principle of relativity states
that there is no preferred inertial frame of reference. Although the two observers
reach different conclusions, both are correct in their own reference frames
because the concept of simultaneity is not absolute. In fact, this is the central point
of relativity. Any inertial frame of reference can be used to describe events and do
physics.

Time Dilation

We can illustrate the fact that observers in different inertial frames may measure
different time intervals between a pair of events by considering a vehicle moving to
the right with a speed v as in Active Figure 26.8a (page 852). A mirror is fixed to
the ceiling of the vehicle, and an observer O’ at rest in this system holds a laser
a distance d below the mirror. At some instant, the laser emits a pulse of light

4 B
>

~ N
TIP 26.1  Who's Right?

~ Which person is correct concerning

the simultaneity of the two events?
Both are correct, because the princi-
ple of relativity states that no inertial
frame of reference is preferred.
Although the two observers may
reach different conclusions, both are
correct in their own reference frame.
Any uniformly moving frame of refer-
ence can be used to describe events
and do physics.



852

Chapter 26

Relativity

vat
2
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ACTIVE FIGURE 26.8
(a) A mirror is fixed to a moving vehicle, and a light pulse leaves O’ at rest in the vehicle. (b) Relative
to a stationary observer on Earth, the mirror and O' move with a speed v. Note that the distance the
pulse travels is greater than 2d as measured by the stationary observer. (¢) The right triangle for calcu-
lating the relationship between Atand At

Physics & Now™

Log into PhysicsNow at www.cpTe.com and go to Active Figure 26.8, where you can observe the bouncing

of the light pulse for various speeds of the train.

directed toward the mirror (event 1), and at some later time after reflecting from -

the mirror, the pulse arrives back at the laser (event 2). Observer O’ carries a clock

and uses it to measure the time interval At, between these two events which she
views as occurring at the same place. (The subscript p stands for proper, as we'll see
in a moment.) Because the light pulse has a speed ¢, the time it takes it to travel.

from point A to the mirror and back to point Ais

Distance traveled 2
Atp = Speed =" [26.6]

The time interval At, measured by O’ requires only a single clock located at the

same place as the laser in this frame.
Now consider the same set of events as viewed by O in a second frame, as
shown in Active Figure 26.8b. According to this observer, the mirror and laser
are moving to the right with a speed v, and as a result, the sequence of events -
appears different. By the time the light from the laser reaches the mirror, the
mirror has moved to the right a distance v At/2, where Atis the time it takes the
light pulse to travel from point A to the mirror and back to point A as measured
by O. In other words, O concludes that, because of the motion of the vehicle, if
the light is to hit the mirror, it must leave the laser at an angle with respect to
the vertical direction. Comparing Active Figures 26.8a and 26.8b, we see that
the light must travel farther in (b) than in (a). (Note that neither observer
“knows” that he or she is moving. Each is at rest in his or her own inertial
frame.)
According to the second postulate of the special theory of relativity, both
observers must measure ¢ for the speed of light. Because the light travels farther in
the frame of O, it follows that the time interval A¢ measured by O is longer than
the time interval At, measured by O'. To obtain a relationship between these two
time intervals, it is convenient to examine the right triangle shown in Active Figure
26.8c. The Pythagorean theorem gives

(- (2 oo
2 2

_ 2d  _ 2d
V2 — o2 N1 — v2/c?

Solving for Atyields

At

-
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Because At, = 2d/c, we can express this result as
14 P

At
= p =
At Ny y Aty

[26.7]

where

1

TSR Ll

Because v is always greater than one, Equation 26.7 says that the time interval A¢
~ between two events measured by an observer moving with respect to a clock® is
longer than the time interval At, between the same two events measured by an
observer at rest with respect to the clock. Consequently, Az > At,, and the proper
time interval is expanded or dilated by the factor y. Hence, this effect is known as
time dilation.
For example, suppose the observer at rest with respect to the clock measures
- the time required for the light flash to leave the laser and return. We assume that
. the measured time interval in this frame of reference, Atp, is one second. (This
- would require a very tall vehicle.) Now we find the time interval as measured by
observer O moving with respect to the same clock. If observer O s traveling at half
the speed of light (v = 0.500¢), then y = 1.15, and according to Equation 26.7,
At= vy At, = 1.15(1.00 s) = 1.15s. Therefore, when observer O’ claims that 1.00 s
~ has passed, observer O claims that 1.15s has passed. Observer O considers the
clock of O’ to be reading too low a value for the elapsed time between the two
events and says that the clock of O’ is “running slow.” From this phenomenon, we
may conclude the following:

A clock moving past an observer at speed v runs more slowly than an ident-
cal clock at rest with respect to the observer by a factor of y~ 1.

The time interval At, in Equations 26.6 and 26.7 is called the proper time. In

general, proper time is the time interval between two events as measured by an
~ observer who sees the events occur at the same position.
: Although you may have realized it by now, it's important to spell out that relativity
- is a scientific democracy: the view of O’ that Ois really the one moving with speed v
~ to the left and that O’s clock is running more slowly is just as valid as the view of O.
The principle of relativity requires that the views of two observers in uniform relative
motion be equally valid and capable of being checked experimentally.

We have seen that moving clocks run slow by a factor of ¥y, This is true for
ordinary mechanical clacks as well as for the light clack Just described. In fact, we
can generalize these results by stating that all physical processes, including chemi-
cal and biological ones, slow down relative to a clock when those processes occur
~in a frame moving with respect to the clock. For example, the heartbeat of an
astronaut moving through space would keep time with a clock inside the space-
ship. Both the astronaut’s clock and hcartbeat would be slowed down relative to a
~ clock back on Earth (although the astronaut would have no sensation of life slow-
ing down in the spaceship).

Time dilation is a very real phenomenon that has been verified by various
- experiments involving the ticking of natural clocks. An interesting example of
- time dilation involves the observation of muons—unstable elementary particles
_ that are very similar to electrons, having the same charge, but 207 times the mass.
~ Muons can be produced by the collision of cosmic radiation with atoms high in
- the atmosphere. These particles have a lifedme of 2.2 us when measured in a ref-
erence frame at rest with respect to them. If we take 2.2 us as the average lifetime
of a muon and assume that their speed is close to the speed of light, we find that

Acuually. Figure 26,8 shows the clock moving and not the observer, but this is equivalent to observer O moving to the

~ left with velocity ¥ with respect to the clock.

« Time dilation

4 A clock in motion runs more slowly
than an identical stationary clock.

e ]
TIP 26.2 Proper Time Interval

You must be able to correctly identify
the observer who measures the
proper time interval. The proper
time interval between two events is
the time interval measured by an
observer for whom the two events

take place at the same position.



854 Chapter 26 Relativity

Muon is created these particles can travel only about 600 m before they decay (Fig. 26.9a). Hence,
R they could never reach Earth from the upper atmosphere where they are pro-
6.6 % 10°m duced. However, experiments show that a large number of muons do reach Earth,

and the phenomenon of time dilation explains how. Relative to an observer on
Earth, the muons have a lifetime equal to y7p, where 1, = 2.2 us is the lifetime in
a frame of reference traveling with the muons. For example, forv= 1099 y= 7.1
A \ and yt, = 16 ps. Hence, the average distance muons travel as measured by an
q!h\ observer on Earth is yvT, = 4800 m, as indicated in Figure 26.9b. Consequently,
muons can reach Earth’s surface.
@ In 1976 experiments with muons were conducted at the laboratory of the
European Council for Nuclear Research (CERN) in Geneva. Muons were injected

Muon decays

" Rl
_Lk—'-.‘-

j_________M“O“ is created into a large storage ring, reaching speeds of about 0.9994c. Electrons produced by -
the decaying muons were detected by counters around the ring, enabling scientists
to measure the decay rate, and hence the lifetime of the muons. The lifetime of
N the moving muons was measured to be about 30 times as long as that of stationary
EsiaOR muons to within two parts in a thousand, in agreement with the prediction of s

relativity.
LR

Muon decays
(b)

Figure 26.9 (2) OT;he muons travel 3 Qu.‘(k Qu‘z 26‘1

only about 6.6 X 10° m as measured s . . . . s
o tae o’ reference frame, in suppose you're an astronaut being pal.d according to the time you spend traveling
which their lifetime is about 2.2 us. in space. You take a long voyage traveling at a speed near that of light. Upon your
Because of time dilation, the muons' return to Earth, you're asked how you'd like to be paid: according to the time
lifetime is longer as measurcd by the elapsed on a clock on Earth or according to your ship’s clock. Which should you
observer on Earth. (b) Muons travel- R L. A
ing with a speed of 0.99¢ travel a dis- choose in order to maximize your paycheck? (a) the Earth clock (b) the ship’s
tance of about 4.80 X 10° m as mea- clock (c) Either clock, it doesn’t make a difference.

sured by an observer on Earth.

EXAMPLE 26.1 Pendulum Periods
Goal Apply the concept of time dilation.

Problem The period of a pendulum is measured to be 3.00 s in the inertial frame of the pendulum. What is the
period as measured by an observer moving at a speed of 0.950¢ with respect to the pendulum?

Strategy Here, we're given the period of the clock as measured by an observer in the rest frame of the clock, so
that’s a proper time interval Af,. We want to know how much time passes as measured by an observer in a frame
moving relative to the clock, which is & Substitution into Equation 26.7 then solves the problem.

Solution n At, 3.00's "
: . . . = = = . 1 8
Substx.tute the proper time and relative speed into V1 - 02/ (0.0500)?
Equation 26.7: ==
¢

Remarks The moving observer considers the pendulum to be moving, and moving clocks are observed to run more
slowly: while the pendulum oscillates once in 3 s for an observer in the rest frame of the clock, it takes nearly 10 s to
oscillate once according the moving observer.

Exercise 26.1
What pendulum period does a third observer moving at 0.900¢ measure?

Answer 6.88s

B S
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The confusion that arises in problems like Example 26.1 lies in the fact that move-
ment is relative: from the point of view of someone in the pendulum’s rest frame,
the pendulum is standing still (except, of course, for the swinging motion),
whereas to someone in a frame that is moving with respect to the pendulum, it’s
the pendulum that’s doing the moving. To keep this straight, always focus on the
observer who is doing the measurement, and ask yourself whether the clock being
measured is moving with respect to that observer. If the answer is no, then the ob-
server is in the rest frame of the clock and measures the clock’s proper time. If the
answer is yes, then the time measured by the observer will be dilated —larger than
the clock’s proper time.
This confusion of perspectives led to the famous “twin paradox.”

The Twin Paradox

An intriguing consequence of time dilaton is the so-called twin paradox
(Fig. 26.10). Consider an experiment involving a set of twins named Speedo and
Goslo. When they are 20 years old, Speedo, the more adventuresome of the two, sets
out on an epic journey to Planet X, located 20 lightyears from Earth. Further, his
spaceship is capable of reaching a speed of 0.95¢ relative to the inertial frame of
his twin brother back home. After reaching Planet X, Speedo becomes homesick
and immediately returns to Earth at the same speed of 0.95c. Upon his return,
Speedo is shocked to discover that Goslo has aged 2D/v = 2(20 ly)/(0.95 ly/y) =
42 years and is now 62 years old. Speedo, on the other hand, has aged only 13 years.

Some wrongly consider this the paradox; that twins could age at different rates
and end up after a period of time having very different ages. While contrary to our
common sense, this isn’t the paradox at all. The paradox lies in the fact that from
Speedo’s point of view, he was at rest while Goslo (on Earth) sped away from him at
0.95¢ and returned later. So Goslo’s clock was moving relative to Speedo and
hence running slow compared with Speedo’s clock. The conclusion: Speedo, not
Goslo, should be the older of the twins!

To resolve this apparent paradox, consider a third observer moving at a constant
speed of 0.5¢ relative to Goslo. To the third observer, Goslo never changes inertial
frames: His speed relative to the third observer is always the same. The third
observer notes, however, that Speedo accelerates during his journey, changing
reference frames in the process. From the third observer’s perspective, it’s clear that
there is something very different about the motion of Goslo when compared to
Speedo. The roles played by Goslo and Speedo are not symmetric, so it isn’t sur-
prising that time flows differently for each. Further, because Speedo accelerates,
he is in a noninertial frame of reference —technically outside the bounds of spe-
cial relativity (though there are methods for dealing with accelerated motion in
relativity). Only Goslo, who is in a single inertial frame, can apply the simple time-
dilation formula to Speedo’s trip. Goslo finds that instead of aging 42 years,

(a) (b)

dThe space traveler ages more slowly
than his twin who remains on Earth.

Figure 26.10 (a) As the twins depart,
they’re the same age. (b) When Speedo
returns from his journey to Planet X,
he’s younger than his twin Goslo, who
remained on Earth.
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TIP 26.3 The Proper Length

You must be able to correcty identify
the observer who measures the
proper length. The proper length
between two points in space is the
length measured by an observer at
rest with respect to the length. Very
often, the proper time interval and
the proper length are not measured
by the same observer.

Length contraction b
y!
——
L ] 1] _:j
o’ x'
(a)
y
it v
mnm————-
(0] x

(b)

ACTIVE FIGURE 26.11

A meter stick moves o the right with
a speed v. (2) The meter stick as
viewed by an observer at rest with
respect to the meter stick. (b) The
meter stick as seen by an observer
moving with a speed v with respect to
it. The moving meter stick is always
measured to be shorter than in its own
rest frame by a factor of V1 — v%/c%.

Physics; % Now™

Log into PhysicsNow at www.cp7e.com
and go to Active Figure 26.11, where
you can view the meter stick from the
points of view of two observers and
compare the measured lengths of the
stick. .

Speedo ages only (1 — 02/ ¢%)1/2(42 years) = 13 years. Of these 13 years, Speedo |

spends 6.5 years traveling to Planet X and 6.5 years returning, for a total travel
time of 13 years, in agreement with our earlier statement.

Length Contraction

The measured distance between two points depends on the frame of reference of

the observer. The proper length L, of an object is the length of the object as mea.
sured by an observer at rest relative to the object. The length of an object mea-
sured in a reference frame that is moving with respect to the object is always less

than the proper length. This effect is known as length contraction.
To understand length contraction quantitatively, consider a spaceship traveling

with a speed v from one star to another, as seen by two observers, one on Earth and -

the other in the spaceship. The observer at rest on Earth (and also assumed to be at

rest with respect to the two stars) measures the distance between the stars to be Ly
According to this observer, the time it takes the spaceship to complete the voyage is-

At = L,/v. Because of time dilation, the space traveler, using his spaceship clock,
measures a smaller time of travel: Az, = A¢/. The space traveler claims to be at rest
and sees the destination star moving toward the spaceship with speed v. Because the

space traveler reaches the star in time Aty, he concludes that the distance L between

the stars is shorter than L,. The distance measured by the space traveler is

At
L= vAtP= v —
Y

Because LP = y At it follows that

L
L=t = T2

{26.9]

According to this result, illustrated in Active Figure 26.11, if an observer at rest
with respect to an object measures its length to be L,, an observer moving ata
speed v relative to the object will find it to be shorter than its proper length by the "~

factor V1 — v2/c2. Note that length contraction takes place only along the direc-
tion of motion.

Time-dilation and length contraction effects have interesting applications for
future space travel to distant stars. [n order for the star to be reached in a fraction
of 2 human lifetime, the trip must be taken at very high speeds. According to an
Earth-bound observer, the time for a spacecraft to reach the destination star will
be dilated compared with the time interval measured by travelers. As was discussed
in the treatment of the twin paradox, the travelers will be younger than their twins
when they return to Earth. Therefore, hy the time the travelers reach the star, they
will have aged by some number of years, while their partners back on Earth will
have aged a larger number of years, the exact ratio depending on the speed of the
spacecraft. At a spacecraft speed of 0.94¢, this ratio is about 3:1.

You are packing for a trip to another star, and on your journey you will be traveling
at a speed of 0.99¢. Can you sleep in a smaller cabin than usual, because you will
be shorter when you lie down? Explain your answer.

 Quick Quiz 26.

You observe a rocket moving away from you. Compared to its length when it was at
rest on the ground, you will measure its length to be (a) shorter, (b) longer, or
(¢) the same. Compared to the passage of time measured by the watch on your wrist,
the passage of time on the rocket’s clock is (d) faster, (e) slower, or (f) the same.
Answer the same questions if the rocket turns around and comes toward you.

B e ———
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EXAMPLE 26.2 Starship Contraction

Goal Apply the concept of length contraction to a moving object.

Problem A starship is measured to be 125 m long while it is at rest with respect to an observer. If this starship now
flies past the observer at a speed of 0.99¢, what length will the observer measure for the starship?

Strategy Moving objects are observed to be contracted, or shorter. Substitute into Equation 26.9.
Solution
Substitute into Equation 26.9 to find the length as mea- L= L,,\/l — 2% = (125 miV1 — (0.99 %2 = 176m

sured by the observer:

Exercise 26.2
If the ship moves past the observer with a speed of 0.80¢, what length will the observer measure?

Answer 75.0m

EXAMPLE 26.3 Speedy Plunge

Goal Apply the concept of length contraction to a distance.

Problem (a) An observer on Earth sees a spaceship at an altitude of 4 350 km moving downward toward Earth with
a speed of 0.970¢. What is the distance from the spaceship to Earth as measured by the spaceship’s captain? (b) After
firing his engines, the captain measures her ship’s altitude as 267 km, while the observer on Earth measures it to be
625 km. What is the speed of the spaceship at this instant? -

Strategy To the captain, the Earth is rushing toward her ship at 0.970¢; hence the distance between her ship and
the Earth is contracted. Substitution into Equation 26.9 yields the answer. In part (b) use the same equation, substi-
tuting the distances and solving for the speed.

Solution

(a) Find the distance from the ship to Earth as measured

by the captain.

Substitute into Equation 26.9, getting the altitude as L= prh — v2/2 = (4350 km)\1 — (0.9700)%/2

measured by the captain in the ship. = 1.06 X 10° km

(b) What is the subsequent speed of the spaceship if the

Earth observer measures the distance from the ship to

Earth as 625 km and the captain measures it as 267 km?

Apply the length-contraction equation: L= LP\Jl - v?/c?

. L \?
Square both sides of this equation and solve for v: L2=L21 - v%?Y) — 1-%"= (‘L—)
4

v=c\1 = (L/Ly)? = cV1 — (267 km/625 km)?
v= 0.904c

Remarks The proper length is always the length measured by an observer at rest with respect to that length.
. Exercise 26.3
- Suppose the observer on the ship measures the distance from Earth as 50.0 km, while the observer on Earth meas-

ures the distance as 125 km. At what speed is the spacecraft approaching Earth?

. Answer 0.917¢
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Length contraction occurs only in the direction of the observer’s motion. Ng . y
contraction occurs perpendicular to that direction. For exaniple, a spaceship atrest
relative to an observer may have the shape of an equilateral triangle, but if it passes s
the observer at relativistic speed in a direction parallel to its base, the base will:

shorten while the height remains the same. Hence, the craft will be observed to be = |
isosceles. An observer traveling with the ship will still observe it to be equilateral. ‘

26.7 RELATIVISTIC MOMENTUM

Properly describing the motion of particles within the framework of special relativity -
requires generalizing Newton’s laws of motion and the definitions of momentum
and energy. These generalized definitions reduce to the classical (nonrelativistic) -
definitions when v is much less than ¢ g

First, recall that conservation of momentum states that when two objects
collide, the total momentum of the system remains constant, assuming that the -
objects are isolated, reacting only with each other. However, analyzing such colli-- i
sions from rapidly moving inertial frames, it is found that momentum is not con- . °
served if the classical definition of momentum, p = mv, is used. In order to have
momentum conservation in all inertial frames— even those moving at an apprecia-
ble fraction of ¢c— the definition of momentum must be modified to read

e

mv ;

o e I35 mu A

Momentum b j4 gy Y [26.10]
where vis the speed of the particle and m is its mass as measured by an observer at

rest with respect to the particle. Note that when v is much less than ¢, the denomi = |

nator of Equation 26.10 approaches one, so that p approaches mv. Therefore, the e |

relativistic equation for momentum reduces to the classical expression when v is .

small compared with .

EXAMPLE 26.4 The Relativistic Momentum of an Electron

Goal Contrast the classical and relativistic definitions of momentum.

—

Problem An electron, which has a mass of 9.11 X 1073 kg, moves with a speed of 0.750c. Find the classical (nonrel-
ativistic) momentum and compare it to its relativistic counterpart prej.

Strategy Substitute into the classical definition to get the classical momentum, then multiply by the gamma factor
to obtain the relativistic version.

Solution
First, compuie the classical {nonrelativistic) momentum p=mv=(9.11 X 10731 kg) (0.750 % 3.00 X 108 m/s)
with v = 0.750¢: - 205X 1002 kg-m/s

-22 .
Multiply this result by y to obtain the relativistic Prel = Uidd _ 205 X 107" kg-m/s
momentum: V1 - v/ V1 — (0.750c/c)

3.10 X 1072 kg -m/s.

Remark The (correct) relativistic result is 50% greater than the classical result. In subsequent calculations, no nota-
tional distinction will be made between classical and relativistic momentum. For problems involving relative speeds
of 0.2¢, the answer using the classical expression is about 2% below the correct answer.

Exercise 26.4
Repeat the calculation for a proton traveling at 0.600c.

Answers p =301 X 1079 kg - m/s, p,e = 3.76 X 107 kg-m/s

- —
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26.8 Relativistic Addition of Velocities

26.8 RELATIVISTIC ADDITION OF VELOCITIES

Imagine a motorcycle rider moving with a speed of 0.80¢ past a stationary
observer, as shown in Figure 26.12. If the rider tosses a ball in the forward
direction with a speed of 0.70¢ relative to himself, what is the speed of the
ball as seen by the stationary observer at the side of the road? Common
sense and the ideas of Newtonian relativity say that the speed should be the
sum of the two speeds, or 1.50¢c. This answer must be incorrect because it
contradicts the assertion that no material object can travel faster than the speed
of light.

Einstein resolved this dilemma by deriving an equation for the relativistic addi-
tion of velocities. Here, only one dimension of motion will be considered. Let two
frames or reference be labeled 5 and d, and suppose that frame d is moving at
velocity vgy, in the position x-direction relative frame b. If the velocity of an object
a as measured in frame d is called v,q4, then the velocity of & as measured in frame
b, van, is given by

Ugp = M [26.11]

1+ Uad Udb

2

The left side of this equation and the numerator on the right are like the equa-
tions of Galilean relativity discussed in Chapter 3, and the evaluation of subscripts
is applied in the same way as discussed in Section 3.6. The denominator of Equa-
tion 26.11 is a correction to Galilean relativity based on length contraction and
time dilation.

We apply Equation 26.11 to Figure 26.13, which shows a motorcyclist, his ball,
and a stationary observer. We are given

Ubm = the velocity of the ball with respect to the motorcycle = 0.70¢

Umo = the velocity of the motorcycle with respect to the stationary

observer = 0.80c,
and we want to find

Upo = the velocity of the ball with respect to the stationary observer.

Thus,
o = Ubm t Umo  _ 0.70¢ + 0.80¢ — 0.96¢
bo L, Yomtme | (0.700(0.800 '
2 ¢?

Figure 26.12 A motorcycle moves past a stationary observer with a speed of 0.80¢; the motorcyclist
throws a ball in the direction of motion with a speed of 0.70¢ relative to himself.

< Relativistic velocity addition

of the Universe.

859

The speed of light is the speed limit
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EXAMPLE 26.5 Urgent Course Correction Needed!

Goal Apply the concept of the relativistic addition of velocities.

Problem Suppose that Bob’s spacecraft is traveling at 0.600¢ in the positive x-direction, as measured by a nearby

observer, while Mike is traveling in his own vehicle directly toward Bob in the negative x-direction at —0.800crelative

the nearby observer. What's the velocity of Bob relative to Mike?

Strategy This problem requires correctly identifying the quantities that go into Equation 26.11, followed by substi- b

tution. The measurement of Bob’s velocity as determined in the observer’s frame O s given, and the measurement of
Bob's velocity in Mike'’s frame is desired.

Solution
Identify the velocity terms in Equation 26.11. vgm = the velocity of Bob with respect to Mike. This will
be substituted for v,4 in Equation 26.11.
vmo = the velocity of the Mike with respect to the
stationary observer = — 0.800c. This will be substituted
for vgy, in Equation 26.11.
vpo = the velocity of the Bob with respect to the station-
ary observer = 0.600¢. This will be substituted for v, in
Equation 26.11.
. . N . __vsM T YMO
Substitute the velocity expressions into Equation 26.11. vBo = T
Examining the form of Equation 26.11, we can see intu- 1+ ——BM2—M9—
itively that vgy and vyo belong on the right hand side ¢
(the letter M appears in both a first and a second posi-
tion), so our previous choices are verified.
. . ox UBM 0.800¢
Substitute given quantities and solve for vpy: 0.600¢ =
vam{(—0.800¢)
L+ =
¢
0.800
(1 = ————vB—M—)O.GOOc = vy — 0.800¢
c

0.600¢ — 0.480 vy = vgm — 0.800¢
UBM — 0.946¢

Remarks Notice how much care had to be taken in identifying quantities and their proper signs. Common sense
might lead us to believe that Mike would measure Bob’s velocity as 1.40¢, but as the calculation shows, Mike measures

Bob’s velocity as less than that of light.
Exercise 26.5
Suppose Bob shines a laser beam in the direction of his ship’s motion. What speed would the nearby observer meas-

ure for the beam? Don’t guess: do the calculation that proves the answer.

Answer ¢

26.9 RELATIVISTIC ENERGY AND THE
EQUIVALENCE OF MASS AND ENERGY

We have seen that the definition of momentum required generalization to make it

compatible with the principle of relativity. Likewise, the definition of kinetic

energy requires modification in relativistic mechanics. Einstein found that the

correct expression for the kinetic energy of an object s

Kinetic energy » KE = yme? — me? [26.12]

-
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The constant term mc? in Equation 26.12, which is independent of the speed of
the object, is called the rest energy of the object, Eg:

Ep = mc* [26.13] < Rest energy

The term yme? in Equation 26.12 depends on the object’s speed and is the sum of
the kinetic and rest energies. We define ymc? to be the total energy E, so that

total energy = kinetic energy + rest energy
or, using Equation 26.12,
E=KE+ me = ‘)’77162 [26.14]
Because y = (1 — v%¢2) 712, we can also express E as

9
me-

E= ————— [26.15] -« Total energy
VI —v/c
This is Einstein’s famous mass—energy equivalence equation.?

The relation E = yme? = KE + mc? shows the amazing result that a stationary
particle with zero kinetic energy has an energy proportional to its mass. Further, a
small mass corresponds to an enormous amount of energy because the propor-
tionality constant between mass and energy is large: 2 =9 X 10 m?/s%. The
equation Eg = mc?, as Einstein first suggested, indirectly implies that the mass of a
particle may be completely convertible to energy and that pure energy—for exam-
ple, electromagnetic energy—may be converted to particles having mass. This is
indeed the case, as has been shown in the laboratory many tinies. For example, the
coming together of a slowly moving electron and its antiparticle, the positron, a
particle with the same mass m, as the electron, but opposite charge, results in the
disappearance of both particles and the appearance of a burst of electromagnetic
energy in the amount 2m,c2. The reverse process is also fairly easily observed in
the laboratory: A high-energy pulse of electromagnetic energy, a gamma ray—
disappears near an atom and an electron-positron pair is created with nearly
100% conversion of the gamma ray's energy into mass. Such a pair-production
process is shown in the bubble chamber photo of Figure 26.13. We will discuss pair
production and annihilation in more detail in Section 26.10.

On a larger scale, nuclear power plants produce energy by the fission of ura-
nium, which involves the conversion of a small amount of the mass of the uranium
into energy. The Sun, too, converts mass into energy, and continually loses mass in
pouring out a tremendous amount of electromagnetic energy in all directions.

it's extremely interesting that while we have been talking about the interconver-
sion of mass and energy for particles, the expression E = me® is universal and
applies to all objects, processes, and systems: a hot object has slightly more mass  Figure 26.13 Bubble-chamber
and is slightly more difficult to accelerate than an identical cold object because it photograph of electron (green) and
has more thermal energy, and a stretched spring has more elastic potential energy positron (red) tracks produced by

; / energetic gamma rays. The highly
and more mass than an identical unstretched spring. A key point, however, is that  curved tracks at the top are due to
these changes in mass are often far too small to measure. Our best bet for measur- the electron and positron inan
; - . . electron—positron pair bending in
ing mass changes is in nuclear transformations, where a measurable fraction of the opposite directions in the magnetic
mass is converted into ernergy. field.

EXAMPLE 26.6 Pool Heater

Goal Combine the concepts of density, rest mass, and heat capacity.

Problem Suppose some mechanism allowed the conversion of the rest mass of water completely into energy.
(a) How much rest energy is contained in 0.500 mm" of water? (b) If all this energy is used to heat an Olympic swim-

",\llhuugh this doesn 't look exactly Tike thie tamous equation 1= mes, it used w be common o write m = Yy,
(Einstein himself wrote it that way }, where wis the effective mass of in ubject moving at speed vand g is the mass
ol that ghject as measined by an observer at rest with respect to the object, Then o £ = vme” becomes the Tamiliay
E = me® Tris corventhy uniashionable to use w = ym,.

Lawtunie Berkeloy Laboratory/Science Photo

Litrary/Photo Besearchers, e
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ming pool with dimensions 2.00 m deep, 25.0 m wide, and 50.0 m long, what is the change in temperature of the
water?

. . - . . . o
Strategy Use the density of water to find the mass in the given volume of water, and multiply by « to get the
energy. The heat capacity equation then yields the temperature change.

Solution
(a) How much rest energy is contained in 0.500 mm”
of water?
n
Use the density to find the mass of this volume of water: p= —;— - m = pV
: [ 1.00m
= (1.00 X 10%kg/m?) (0.500 %(——-——"———-——M
m = (1.00 X 10 kg/m~){0.500 mm”) 100 < 10° mm )
=5.00 X 1077 kg
The energy equivalent of the water is found from Equa- Fp= me® = (5.00 X 1077kg)(3.00 X 108 m/s)?
tion 26.13: = 450 X i(}n}j
(b) Find the change in temperature of the pool water.
First find the volume of water in the pool: V= [ X WX H= (30.0m)({25.0 m){2.00 m)
=250 X 10° m’
Using the definition of density, calculate the mass of the m= pV= (100X 10% kg/mi%} (2.50 X 10° m?)
water in the pool: =950 x 105 kg
Use the heat capacity equation and the result of part Q= mcAT
(a) to calculate the temperature change of the water in 0 4.50 X 1010
the pool: AT=—==

me  (2.50 X 10°kg)(4.19 X 10°J/kg-K)
= 430K

Remarks Only 12 mm?® of water, completely converted to energy, could raise the water temperature of an Olympic-
sized pool by 100 K! However, it's generally impossible to achieve the complete conversion of mass to energy. Nuclear
power plants convert only a tiny percentage of the mass of uranium. An exception is the interaction of matter with
antimatter.

Exercise 26.6
(a) What mass, when completely converted into energy, would provide the annual energy needs of the entire world

(about 4 X 102°]) (b) What volume of water contains that much energy?

Answers (a) 4 X 10°kg (b) 4 m®

Energy and Relativistic Momentum

Often the momentum or energy of a particle is measured rather than its speed, so
it's useful to have an expression relating the toral energy E to the relativistic
momentum p. This is accomplished by using the expressions £ = yme® and p = ymu.
By squaring these equations and subtracting, we can eliminate v. The result, after
some algebra, is

EQ - pgcz . ())?('2)2 [26.16]

When the particle is at rest, p = 0,s0 E=Ep~= me?. In this special case, the total
energy equals the rest energy. For the case of particles that have zero mass, such as
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photons (massless, chargeless particles of light), we set m = 0 in Equation 26.16
and find that

E= pc (26.17]

This equation is an exact expression relating energy and momentum for photons,
which always travel at the speed of light.

In dealing with subatomic particles, it's convenient to express their energy in
electron volts (eV), because the particles are given energy when accelerated
through an electrostatic potential difference. The conversion factor is

leV =1.60X10719]

For example, the mass of an electron is 9.11 X 10731 kg. Hence, the rest energy
of the electron is
m,e? = (9.11 X 1073 kg) (3.00 X 108 m/s)? = 8.20 X 107 1*]
Converting to eV, we have
mec? = (8.20 X 10714])(1eV/1.60 X 1071°]) = 0.511 MeV
Because we frequently use the expression E = yme? in nuclear physics, and because
m is usually in atomic mass units, u, it is useful to have the conversion factor

1 u = 931.494 MeV/¢% Using this factor makes it easy, for example, to find the
rest energy in MeV of the nucleus of a uranium atom with a mass of 235.043 924 u:

Ep= mc® = (235.043 924 u) (931.494 MeV/u- ) (c?) = 2.189 42 X 10°MeV

Quick Quiz 26.4
A photon is reflected from a mirror. True or false: (a) Because a photon has zero
mass, it does not exert a force on the mirror. (b) Although the photon has energy,
it can’t transfer any energy to the surface because it has zero mass. (c) The photon
carries momentum, and when it reflects off the mirror, it undergoes a change in
momentum and exerts a force on the mirror. (d) Although the photon carries
momentum, its change in momentum is zero when it reflects from the mirror, so it
can’t exert a force on the mirror.

EXAMPLE 26.7 A Speedy Electron

Goal Compute a total energy and a relativistic kinetic energy.

Problem An electron moves with a speed v = 0.850c. Find its total energy and kinetic energy in mega electron volts

{MeV), and compare the latter to the classical kinetic energy ( 10% eV = 1 MeV).

Strategy Substitute into Equation 26.15 to get the total energy, and subtract the rest mass energy to obtain the

kinetic energy.

Solution m 2 (9.11 X 10~ kg) (3.00 X 10%m/s)2

Substitute values into Equation 26.15 to obtain the total E
energy:

- \[1 - v2/?

V1 = (0.850¢/0)2

1.00eV_
=156 X 10718] = (1.56 X 10713 (————————)
5 J=@as I Too x 10795
= 0.975 MeV
The kinetic energy is obtained by subtracting the rest KE = E — m,c® = 0.975 MeV — 0.511 MeV = 0.464 MeV
energy from the total energy:
Calculate the classical kinetic energy: KE jassical = %m,,v2

= 1(9.11 x 1073 kg) (0.850 X 3.00 X 10°m/s)*
3 g

=296 x 1071] = 0.185 MeV
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Remarks Notice the large discrepancy between the relativistic kinetic energy and the classical kinetic energy.

Exercise 26.7
Calculate the total energy and the kinetic energy in MeV of 4 proton traveling at 0.600¢. (The rest energy of a proton

is approximately 938 MeV.)

Answers E = 1.17 X 10° MeV, KE = 232 MeV

EXAMPLE 26.8 The Conversion of Mass to Kinetic Energy in Uranium Fission

Goal Understand the production of energy from nuclear sources.

Problem The fission, or splitting, of uranium was discovered in 1938 by Lise Meitner, who successfully interpreted
some curious experimental results found by Otto Hahn as due to fission. (Hahn received the Nobel prize.) The fis-
sion of 233U begins with the absorption of a slow-moving neutron that produces an unstable nucleus of 236U, The
236y nucleus then quickly decays into two heavy fragments moving at high speed, as well as several neutrons. Most of
the kinetic energy released in such a fission is carried off by the two large fragments. (a) For the typical fission
process

n + 20 — Hlpa + $2Kr + 3jn
calculate the kinetic energy in MeV carried off by the fission fragments. (b) What percentage of the initial energy is

converted into kinetic energy? The atomic masses involved are given below in atomic mass units.

ln= 1.008665u  %5U = 235.043924u  '3Ba = 140.903496u  33Kr = 91.907936 u

Strategy This is an application of the conservation of relativistic energy. Write the conservation law as a sum of
kinetic energy and rest energy, and solve for the final kinetic energy. Equation 26.15, solved for v, then yields the
speeds. ‘

Solution
(a) Calculate the final kinetic energy for the given process.

Apply the conservation of relativistic energy equation, (KE + mc®)iniga = (KE + me2) gnal
assuming that KEipjga = 0: 0+ mn62 + mUc2 = mBac2 + mmc2 + Smn52 + KEgna
Solve for KEg,. and substitute, converting to MeV in KEgoq = [(my, + my) — (mpy + mge + 3m,)] e
the last step: KEgna = (1.008 665u + 235.043 924 u)c?

—{140.903 496 u + 91.907 936 u + 3(1.008 665 u)]e?
(0.215 162 u)(931.494 MeV/u- 2)(c?)

= 200.422 MeV
(b) What percentage of the initial energy is converted
into kinetic energy?
Compute the total energy, which is the initial energy: Eiitial = 0 + mpc? + mye?

= (1.008 665u + 235.043 924 u)c?
= (286.052 59 u)(931.494 MeV/u- ¢?) (¢?)
= 2.198 82 X 10% MeV

200.422 MeV

= > 0 = g, % -2
N0 E Ll R

Divide the kinetic energy by the total energy and
multiply by 100%:

Remarks This calculation shows that nuclear reactions liberate only about a tenth of one percent of the rest energy
of the constituent particles. Some fusion reactions better that number by several times.
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Exercise 26.8

In a fusion reaction, light elements combine to form a heavier element. Deuterium, which is also called heavy hydro-
en, has an extra neutron in its nucleus. Two such particles can fuse into a heavier form of hydrogen, called tritium,

plus an ordinary hydrogen atom. The reaction is

i+ — {T+IH

(a) Calculate the energy released in the form of kinetic energy, assuming for simplicity that the initial kinetic energy
is zero. (b) What percentage of the rest mass was converted to energy? The atomic masses involved are as follows:

D =2014102u T =3016049u  jH =1.007825u

Answers (a) 4.033 37 MeV  (b) 0.1075%

26.10 PAIR PRODUCTION AND ANNIHILATION

In general, converting mass into energy is a low-yield process. Burning wood or
coal, or even the fission or fusion processes presented in Example 26.8, convert
only a very small percentage of the available energy. An exception is the reaction
of matter with antimatter.

A common process in which a photon creates matter is called pair production,
illustrated in Figure 26.14. In this process, an electron and a positron are simulta-

neously produced, while the photon disappears. (Note that the positron is a posi- Photon
tively charged particle having the same mass as an electron. The positron is often
called the antiparticle of the electron.) In order for pair production to occur, Before

energy, momentum, and charge must all be conserved during the process. It's
impossible for a photon to produce a single electron because the photon has zero
harge and charge would not be conserved in the process.
As we explain in more detail in Chapter 27, the energy of a photon having a fre- '

quency fis given by E = Af, where his Planck’s constant. The minimum energy that )

a photon must have to produce an electron—positron pair can be found using Positron
conservation of energy by equating the photon energy Afmin to the total rest

energy of the pair. That is, ‘= Electron

Bfmin = 2m,c2 [26.18] /

Because the energy of an electron is mec? = 0.51 MeV, the minimum energy
required for pair production is 1.02 MeV.

Pair production can’t occur in a vacuum, but can only take place in the pres-  Figure 26.14 Representation of
ence of a massive particle such as an atomic nucleus. The massive particle must e
participate in the interaction in order that energy and momentum be conserved
simultaneously.

Pair annihilation is a process in which an electron-positron pair produces two
photons—the inverse of pair production. Figure 26.15 is one example of pair
annihilation in which an electron and positron initially at rest combine with each
other, disappear, and create two photons. Because the initial momentum of the pair
is zero, it's impossible to produce a single photon. Momentum can be conserved Positron Electron
only if two photons moving in opposite directions, both with the same energy and @ L
magnitude of momentum, are produced. We will discuss particles and their
antiparticles further in Chapter 30.

After

Before

26.11 GENERAL RELATIVITY Photon Photon
pecial relativity relates observations of inertial observers. Einstein sought a more @ oo
e

general theory that would address accelerating systems. His search was motivated in
part by the following curious fact: mass determines the inertia of an object and also After

the strength of the gravitational field. The mass involved in inertia is called inertial  figure 26.15 Representation of
mass, m;, whereas the mass responsible for the gravitational field is called the  the process of pair annihilation.
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(a)

gravitational mass, m,. They appear in Newton’s law of gravitation and in the sec-
ond law of motion:
I Mgy
Gravitational property =G —3

Inerdal property  F; = m;a

The value for the gravitational constant G was chosen to make the magnitudes
of myand m; numerically equal. Regardless of how G is chosen, however, the strict
proportionality of mg and m; has been established experimentally to an extremely
high degree: a few parts in 10'2. It appears that gravitational mass and inertial
mass may indeed be exactly equal: m; = m,.

There is no reason a priori, however, why these two very different quantities
should be equal. They seem to involve two entirely different concepts: a force of
mutual gravitational attraction between two masses and the resistance of a single
mass to being accelerated. This question puzzled Newton and many other physi-
cists over the years and was finally incorporated as a fundamental principle of
Einstein’s remarkable theory of gravitation, known as general relativity, in 1916.

In Einstein’s view, the remarkable coincidence that m, and m; were exactly equal
was evidence for an intimate connection between the two concepts. He pointed out
that no mechanical experiment (such as releasing a mass) could distinguish between
the two situations illustrated in Figures 26.16a and 26.16b. In each case, a mass re-
leased by the observer undergoes a downward acceleration of g relative to the floor.

Einstein carried this idea further and proposed that no experiment, mechanical
or otherwise, could distinguish between the two cases. This extension to include
all phenomena (not just mechanical ones) has interesting consequences. For
example, suppose that a light pulse is sent horizontally across the box, as in
Figure 26.16¢. The trajectory of the light pulse bends downward as the box accel-
erates upward to meet it. Einstein proposed that a beam of light should also be
bent downward by a gravitational field (Fig. 26.16d).

The two postulates of Einstein’s general relativity are as follows:

1. All the laws of nature have the same form for observers in any frame of refer-
ence, accelerated or not.

2. In the vicinity of any given point, a gravitational field is equivalent to an accel-
erated frame of reference without a gravitational field. (This is the principle of
equivalence.)

)
)

(b) {c) (d)

Figure 26.16 (a) The observer in the cubicle is at rest in a uniform gravitational field §. He experi-
ences a normal force H. (b) Now the observer is in a region where gravity is negligible, but an external
force F acts on the frame of reference, producing an acceleration with magnitude g Again, the man
experiences a normal force d that accelerates him along with the cubicle. According to Einstein, the
frames of reference in parts (a) and (b) are equivalent in every way. No local experiment could distin-
guish between them. (c) The observer turns on his pocket flashlight. Because of the acceleration of the
cubicle, the beam would appear to bend toward the floor, just as a tossed ball would. (d) Given the
equivalence of the frames, the same phenomenon should be observed in the presence of a gravity field.

1
1
|



The second postulate implies that gravitational mass and inertial mass are com-
pletely equivalent, not just proportional. What were thought to be two different
types of mass are actually identical.

One interesting effect predicted by general relativity is that time scales are altered
bv gravity. A clock in the presence of gravity runs more slowly than one in which grav-
ity is negligible. As a consequence, light emitted from atoms in a strong gravity field,
such as the Sun’s, is observed to have a lower frequency than the same light emitted
by atoms in the laboratory. This gravitational shift has been detected in spectral lines
emitted by atoms in massive stars. It has also been verified on Earth by comparing the
frequencies of gamma rays emitted from nuclei separated vertically by about 20 m.

Two identical clocks are in the same house, one upstairs in a bedroom and the other
downstairs in the kitchen. Which statement is correct? (a) The clock in the kitchen
runs more slowly than the clock in the bedroom. (b) The clock in the bedroom runs
more slowly than the clock in the kitchen. (c) Both clocks keep the same time.

The second postulate suggests that a gravitational field may be “transformed
away” at any point if we choose an appropriate accelerated frame of reference—a
freely falling one. Einstein developed an ingenious method of describing the
acceleration necessary to make the gravitational field “disappear.” He specified a cer-
tain quantity, the curvature of spacetime, that describes the gravitational effect at every
point. In fact, the curvature of spacetime completely replaces Newton’s gravitational
theory. According to Einstein, there is no such thing as a gravitational force. Rather,
the presence of a mass causes a curvature of spacetime in the vicinity of the mass.
Planets going around the Sun follow the natural contours of the spacetime, much as
marbles roll around inside a bowl. In 1979, John Wheeler summarized Einstein’s
general theory of relativity in a single sentence: “Mass one tells spacetime how to
curve; curved spacetime tells mass two how to move.” The fundamental equation of
general relativity can be roughly stated as a proportion as follows:

Average curvature of spacetime % energy density

The equation corresponding to this proportion is solved for a mathematical
quantity called the metric, which can be used to measure the lengths of vectors and
to compute trajectories of bodies through space. The metric looks something like
a matrix, with different entries at each point of space and time. (There are a few
important differences, beyond the level of this course.)

Einstein pursued a new theory of gravity in large part because of a discrepancy
in the orbit of Mercury as calculated from Newton’s second law. The closest
approach of the Mercury to the Sun, called the perihelion, changes position slowly
over time. Newton’s theory accounted for all but 43 seconds of arc per century;
Einstein’s general relativity explained the discrepancy.

The most dramatic test of general relativity came shortly after the end of World
War I. The theory predicts that a star would bend a light ray by a certain precise
amount. Sir Arthur Eddington mounted an expedition to Africa and, during a
solar eclipse, confirmed that starlight bent on passing the Sun in an amount
matching the prediction of general relativity (Fig. 26.17). When this discovery was
announced, Einstein became an international celebrity.

Apparent
direction to star
.
Deflected path of light A P
f e 2 1.75
rom star -
- L
//__// To star
Q - Sun (actual direction)

Earth

26.11  General Relativity 867

Figure 26.17 Deflection of
starlight passing near the Sun.
Because of this effect, the Sun and
other remote objects can actas a
gravitational lens. In his general theory
of relativity, Einstein calculated that
starlight just grazing the Sun's surface
should be deflected by an angle

of 175",
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Other tests were proposed and verified long after Einstein’s death, including
the time delay of radar bounced off Venus, and the gradual lengthening of the pe-
riod of binary pulsars due to the emission of gravitational radiation. The latter has
been verified with such precision that general relativity can lay claim to being the
most accurate theory in physics.

General relativity also predicts extreme states of matter created by gravitational
collapse. If the concentration of mass becomes very great, as is believed to occur
when a large star exhausts its nuclear fuel and collapses to a very small volume, a
black hole may form. Here the curvature of spacetime is so extreme that all matter
and light within a certain radius becomes trapped. This radius, called the Schwarz-
schild radius or event horizon, is about 3 km for a black hole with the mass of our
Sun. At the black hole’s center may lurk a singularity—a point of infinite density
and curvature where spacetime comes to an end.

There is strong evidence for the existence of a black hole having a mass of mil-
lions of Suns at the center of our galaxy.

Applying Physics 26.1

Faster Clocks in a “Mile High City”

Atomic clocks are extremely accurate; in fact, an error
of 1 second in 3 million years is typical. This error can
be described as about one part in 10*%. On the other
hand, the atomic clock in Boulder, Colorado, is often
15 ns faster than the one in Washington after only one
day. This is an error of about one partin 6 X 1012,
which is about 17 times larger than the typical error. If
atomic clocks are so accurate, why does a clock in Boul-
der not remain synchronous with one in Washington?

Explanation According to the general theory of rela-
tivity, the passage of time depends on gravity—clocks
run more slowly in strong gravitational fields. Wash-
ington is at an elevation very close to sea level,
whereas Boulder is about a mile higher in altitude.
Hence, the gravitational field at Boulder is weaker
than at Washington. Asa result, an atomic clock runs
more rapidly in Boulder than in Washington. (This
effect has been verified by experiment.)

SUMMARY

PhysicsX¥{Now™ Take a practice test by logging into Physics-
Now at www.cp7e.com and clicking on the Pre-Test link for
this chapter.

26.5 Einstein’s Principle of Relativity

The two basic postulates of the special theory of relativity
are as follows:

1. The laws of physics are the same in all inertial frames of
reference.

2. The speed of light is the same for all inertial observers,
independently of their motion or of the motion of the
source of light.

26.6 Consequences of Special Relativity
Some of the consequences of the special theory of relativity
are as follows:

1. Clocks in motion relative to an observer siow down, a phe-
nomenon known as time dilation. The relationship be-
tween time intervals in the moving and at-rest systems is

At = yAt, [26.7}

where At is the time interval measured in the system in
relative motion with respect to the clock,

1

v V1 — v2/¢2

(26.8]

and At is the proper time interval measured in the sys-
tem moving with the clock.

2. The length of an object in motion is coniracted in the
direction of motion. The equation for length contrac-

tion is
L=LN1 - ¥/ [26.9]

where L is the length measured by an observer in mo-
tion relative to the object and L, is the proper length
measured by an observer for whom the object is at rest.

3. Events that are simultaneous for one observer are not
simultaneous for another observer in motion relative to
the first.

26.7 Relativistic Momentum
The relativistic expression for the momentum of a particle
moving with velocity v is

my

m [26.10]

p=

= ymv

26.8 Relativistic Addition of Velocities

The relativistic expression for the addition of velocities is

+
vy = —24— b [26.11]
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where 1, is the velocity of object a with as measured in
frame b, v,q is the velocity of object aas measured in frame
d, and ugp, is the velocity of frame d as measured in frame b.

26.9 Relativistic Energy and the
Equivalence of Mass and Energy
The relativistic expression for the kinetic energy of an object is

KE = yme? — mc? [26.12]

where mc? is the rest energy of the object, Ex.
The total energy of a particle is
mc?

E = ————— [26.15]
1 - v2/¢2

CONCEPTUAL QUESTIONS

1. A spacecraft with the shape of a sphere of diameter D
moves past an observer on Earth with a speed 0.5¢c. What
shape does the observer measure for the spacecraft as it
moves past?

2. The equation E = mc? is often given in popular descrip-
tions of Einstein’s theory of relativity. Is this expression
strictly correct? For example, does it accurately account
for the kinetic energy of a moving mass?

3. You are in a speedboat on a lake. You see ahead of you a
wave front, caused by the previous passage of another boat,
moving away from you. You accelerate, catch up with, and
pass the wave front. Is this scenario possible if you are ina
rocket and you detect a wave front of light ahead of you?

4, What two speed measurements will two observers in rela-
tive motion always agree upon?

5. The speed of light in water is 2.30 X 108 m/s. Suppose an
electron is moving through water at 2.50 X 108 m/s. Does
this particle speed violate the principle of relativity?

6. With regard to reference frames, how does general relativ-
ity differ from special relatvity?

7. Some distant starlike objects, called quasars, are
receding from us at half the speed of light (or greater).

PROBLEMS

1, 2, 3 = straightforward, inic1mediaie, challenging

Physics‘&ﬁ»’, Now™ = coached problem with hints available at www.cp7e.com

Section 26.4 The Michelson-Morley Experiment

1. Two airplanes fly paths I and II specified in Figure 26.5a.
Both planes have air speeds of 100 m/s and fly a distance
L = 200 km. The wind blows at 20.0 m/s in the direction
shown in the figure. Find (a) the time of flight to each
city, (b) the time to return, and (c) the difference in total
flight times.

2. In one version of the Michelson~Morley experiment,
the lengths L in Figure 26.6 were 28 m. Take v to be
3.0 X 10* m/s, and find the time difference caused by rota-
tion of the interferometer and (b) the expected fringe shift,
assuming that the light used has a wavelength of 550 nm.

Problems 869

This is Einstein’s famous mass-energy equivalence equation.
The relativistic momentum is related to the total energy
through the equation

E2=p%2 + (mc2)? [26.16]

26.10 Pair Production and Annihilation

Pair production is a process in which the energy of a
photon is converted into mass. In this process, the photon
disappears as an electron - positron pair is created. Likewise,
the energy of an electron—positron pair can be converted
into electromagnetic radiation by the process of pair
annihilation.

What is the speed of the light we receive from these
quasars?

8. It is said that Einstein, in his teenage years, asked the
question, “What would [ see in a mirror if I carried it in
my hands and ran at a speed near that of light?” How
would you answer this question?

9. List some ways our day-to-day lives would change if the
speed of light were only 50 m/s.

10. Two identically constructed clocks are synchronized. One
is put into orbit around Earth while the other remains on
Farth. Which clock runs more slowly? When the moving
clock returns to Earth, will the two clocks still be synchro-
nized.

11. Photons of light have zero mass. How is it possible that
they have momentum?

12. Imagine an astronaut on a trip to Sirius, which lies 8
lightyears from Earth. Upon arrival at Sirius, the astronaut
finds that the trip lasted 6 years. If the trip was made at a
constant speed of 0.8¢, how can the 8-lightyear distance
be reconciled with the 6-year duration?

13. Explain why it is necessary, when defining length, to spec-
ify that the positons of the ends of a rod are to be mea-
sured simultaneously.

[ = full solution available in Student Solutions Manwal/Study Guide

- = biomedical application

Section 26.6 Consequences of Special Relativity

3. A deep-space probe moves away from Earth with a speed
of 0.80c. An antenna on the probe requires 3.0s,
in probe time, to rotate through 1.0 rev. How much
time is required for 1.0 rev according to an observer on
Earth?

4. If astronauts could travel at v = 0.950c, we on Earth
would say it takes (4.20/0.950) = 4.42 years to reach
Alpha Centauri, 4.20 lightyears away. The astronauts dis-
agree. (a) How much time passes on the astronauts’
clocks? (b) What is the distance to Alpha Centauri as
measured by the astronauts?
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AP Physics B

W‘\/vs he Mass AVD Erersy
DiBuce,

1. A space ship at rest on a launching pad has a mass of 1.00 x 105 kg. How much will its
energy have increased when the ship is moving at 0.600c ?
A) 1.12x1021] D) 6.00x1021J
B) 1.62x1021] E) 9.00x1021J
C) 2.25x1021]

2. The temperature of a 5.00-kg lead brick is increased by 225 C°. If the specific heat
capacity of lead is 128 J/(kg « C°), what is the increase in the mass of the lead brick when
it has reached its final temperature?

A) 4.33x10-11kg D) 2.40x 10-12kg
B) 9.66x 10-11 kg E) 4.80x 10~ kg
C) 1.60x10-12kg

3. How much energy would be released if 1.0 g of material were completely converted into
energy?

A) 9x108] B) 9x109] C) 9x10!1] D) 9x1013] E) 9x1016]

4. A particle travels at 0.60c. Determine the ratio of its kinetic energy to its rest energy.
A) 025 B) 050 C) 0.60 D) 0.64 E) 0.80

5. The average power output of a nuclear power plant is 500 MW. In 1 minute, what is the
change in the mass of the nuclear fuel due to the energy being taken from the reactor?
Assume 100% efficiency.

A) 93x1017kg B) 93x10-11kg C) 3.3x10-3kg D) 3.3x107kg E) 9.3kg

[

A‘—-—&
C <

E() = M, C
F - MmeC”

IRV

9’, E: XMDCL

Answer Key

A}/)/[():V

2.25x1021]
1.60 x 10-12 kg
O9x10137J

0.25

33x 107 kg
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O
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O
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- A proton has a mass of 1.673 x 10-27 kg. If the proton is accelerated to a speed of 0.93c¢,

what is the magnitude of the relativistic momentum of the proton?

6.2 x 10-17 kg o m/s D) 5.9x10-24kg « m/s
1.3 x 10-18kg o m/s E) 1.6x10-27 kg e m/s
4.7 x 10-19kg o m/s

The momentum of an electron is 1.60 times larger than the value computed non-
relativistically. What is the speed of the electron?

2.94 x 108 m/s D) 2.34 x 108 m/s
2.76 x 108 m/s E) 1.83 x 108 m/s
2.61 x 108 m/s
. An electron gun inside a computer monitor sends an electron toward the screen at a speed

of 1.20 x 108 m/s. If the mass of the electron is 9.109 x 10-31 kg, what is the magnitude
of its relativistic momentum?

9.88 X 10723 kg « m/s D) 1.41x1022kge«m/s

1.09 x 1022 kg « m/s E) 3.25x10"22kg « m/s

1.20 x 1022 kg « m/s

At what speed is a particle traveling if its kinetic energy is three times its rest energy?

0.879¢ B) 0.918c C) 0.943¢ D) 0.968c E) 0.989¢

Answer Key
1. B 1.3x 10-18kg « m/s
2. D 2.34 x 108 m/s
3. C 1.20 X 1022 kg « m/s
4. D 0.968¢



-1 uRqoid
s .GOmua_vﬁu Y} JO JsuUBN JO DURISID PUR AU YL UO VYIS SI pur X0Q
Y} JO (10331 Y} JO UYL 3G PINOYS IUNOIIB [FYIIBI JIOW JuY) 139 nok Sy
Aq ‘asB0100p ® Jayns AJaJus ISnw pud ey ‘xoq S UPISUY JO pUd
U0 WOLJ PINIWI ST UONBIPRI OY] USYAM "SI} UBY] I3PIM yonuw
21w suoneayduir ayy jeyy soziwdooas Appinb ouo ‘Adioua Jueiper
Ylm PI)eIo0sse SSEW Sy 03 douelsul 181y 93 vl syutod (uorsioan
[euiBLIO S UIRISUIY WO} JBYMIWOS SIOPIP YoIym) 31 pajuossad
dAey oM se uone[noped Ay yInoiyy A81sus jo eruour [ejusw
-wpunj v syIosse 31 {pakomioey Funuossq sy Aq pauasse| jou st
soueprodul syt IsisAyd oy o “ypnsas sppy £q paziwoyds Ajqe
-qoid a1e AjAne[pl pur uRISUTY ‘J9ONS ) U0 UBW Y} JOJ

. ¢

(8-1 SU=F o Sew

aaey am ‘Joyddos suopenbs om) 1se] 2 Fuming

@n 0 =XV + T

Jey} yons ‘ws ssew v Jo jusjeambo
Y M YuM paured sey uoneipes oy jeys Nepnisod 21053104y
I poaow sey sjuauod s) snpd Xoq Yy JO SSew JO INUID Ay
JRYY A 03 WURIONIT 18 M ‘wdysAs pajejost ue Juraq sup ng
(A -

9D -l wa = xy
1xy souelsip v y3noJyy xoq ay) saow
03 st ss3001d sy} Jo 3nsa1 9y sny ], , urede 1591 03 x0q Y3 s3unq
goigm ‘Aqeniur 9aed 31 suo oy 03 sysoddo pue enbo ‘aspndwy ue
SA3AUOD puB X0Q SY) JO PUDd I2YI0 Y3 SHY uopeiper 3 ‘(@ D> a
papaoad ‘Aaeou A1oa 2/77 =) 1y swy 8 10) Ajoy) Supaen Joyy

s~D . 7 " a

Aq uaA1d ‘a paads e yum S]10091 X0q 91 MUY I/ — 0}

4210 Y1 0] X0q

2y1 Jo pua auo w0l f Bujjaansy
ABaoua wvipns fo 15409

o fo 1 nsas v sv (q) vopsod
Jouyf v o1 (0) vorsod oy
S11 WoLf $]10I04 X0 D YoM
up Juswraxdxs poa1y10dsy
Dx0q S MpISULY -] 81

(®)

"AMD0[9A 0) WINJUMUOW JBIUT] JO OHRI ) UVRY M ST enaaur Ag,
(9061) ££9~LT9 ‘0T *sAyd uup ‘wnswy 'y,

{enbd winjuawour e a1inboe 1snw xoq Y3 ‘019z 03 [enba surewl
w)sAs ayy Jo wnudwOw [v10% 3} DUIS "2/F wnjudwow s
uoneipex L [(e)p-1 Brg] Areuones Afreniur st pue sguy |
“punoLIns st wolj pare[osi st yeyy 7 YJud| pue gy ssew jo xoq v Jo
PUd 3u0 wolj pantws st (suojoyd jo 1s1nq ©) £319u0 Juripes Jog
junoure ue jeyy ssoddns sy, , “Judjeanba ssew [enssur uread e )
YIM paterdosse oaey Isnw A315ud yeyy 15983ns 03 51 31 jo asodind
SYL {9061 ul jpaswiy wpysuig Aq pajuaaur sem yoiym (quowrsad
X3 9[qiseay A[[eas jou ‘snonnoy v a1 LSswadxe ydnoy,,
© Ajeson) suounsadxas uayuopagd e 3q [pim yutod Junueys ing
uaadxo
paads-apewnin oyy ui Suond3pR2 Yy 105 A31sud ondury puw paads
U39MI2q UOHE[2I 3Y) JO JUNOIIE [[nj © ‘s90uanbasuod ayy Jo 2uo se
‘urelqo [reys sp\ ,,'sv1poq ssoig,, pue suojoyd o3 Ajjenbs £jdde
ey synsar jestweudp swos dojaaap [reys om Juiop os u pue
‘uoneipes jo A819ud oY) pue Jayew Areuipio JO enour oY) usamIaq
UORD3UU0D el Y) IIPISUOD [[BYS oM IO ‘IYeLIdPUN MOU
184S 3 ey} UOISSNOSIP Y} O} UONINPONUI U Se awudoadde
A1q1adns st K1onb 2aneooaocsd siy ing ‘Aidwr 13w vonmonb
SA0qe Ay Jeyy Judxe a1 03 soisAyd Kimuao-yinz paredianue
Alrear pey uomoN ey 15933ns 03 Juoim anb ag prom I

(0£L1 P32 yip) syo11do ‘uorman

Juopisodwo)) 41ay1 1a1ua yorym 1y fo
Sapo114nd dy1 wioif Anaydy 4ay1 fo yomu amasas saipog jou Kow
PuD “49yjoup du0 o1} apqi14au03 1YS1Y pup SIpog $5048 10u 24y

ADYINI 40 VILYINI IHL NOILVIOVY ANV ¥ILIVYW




1961 YOX MIN 'UMOI) ‘Anantopy ‘uisury vy

(6v61)

L9L1 ‘9L "2y “sAyg ‘dONIOL ‘A "V PUB ‘VISILNGT D) D MO Y "My
-aput Junb aq 01 paseadde sme| [luswIBpPUN] OM) 2SIY) {ssBw
JO UONBAIISUOD 3Y) JO me] 3} pue AB10ud JO UONBAIISUOD oY)
JO mel Yy ‘Apwiey ‘sdueisodwll [EIUNLBPUNG JO SMEB] UONBAIIS
-U0d> om}) poziuBodar sosAyd ‘Ananepr Jo jusape ay) 0y
'ssewr Jo uondoduod 3yl Yim pautaduod st paf sey K103y [Broads
A YoM 0] Jororaeyd [BI2UIB ¥ JO J[nsal ueliodw JSOW YL

1z SPIOM UMO
sIy djonb o juenodwr Apwonxd Fuiaq se uondAUU0d SIy
Jo Axaa00s1p oy popieSas upisury  poziudoossun Fuof sem om}
oY1 uRMILq uoRULod Newnul syl ‘(3 | moqe Ljuo jo ope
-amba ssew e sey apdoad uoipiu e jo Lo v uy sasodind ansswop
Joj Aep uad posn A3roud oy “89) qrews ABuipaaoxs st £31sud
JO wunowre udA1d ® Yim pareloosse ssew ay} ‘sopnyudew reiiwuej)
JO swdy up ‘ssnedsg  Cuo os puy  pefieyoun sondedes swes
9yl ury) ssew dJjow sey Joioeded padieyo v "ploo udyM Judwe[y
Jwies Ay ury) ssew siow sey dwef v Jo JudWRlY PaTEIY O, “ISL
18 [[eq j08 Swes dy) ey} SSEW J10W SLY woNOW Ui [jeq Jiof v

(o1-1 Wy, = gv

'ssew [e13aour sy ul wy 93ueyod Suipuodsariod v
sajdwir Apoq e jo A310u2 oy ur gy 98ueyo dup ey st uonenbs
s.ulsuIy Jo 93essow Yy Ing  “AN[ESIdATUN §I] WO UOHUdE
1I9AIP O} SE SUONBWLIOJSURI) JES[ONU 0} PAYUI] A[IAISNIX3 OS usaq
(s)unoooe seindod ur yses] jv) sey ,ow = 7 uopenbs ayy

“wndads Je[os JvIjIWE) A} AMNSUOD JeYI—I[OIABII[N pue
QUqQIsia ‘parerjui—Ad | Ao Jo 13pio 2 Jo saF1dud [enpialpul
i suojoyd ug sodesss Ajjeuy A810ud nay) pue ‘soejuns s.uns )
Zupyoral 210§0q paqiosqe A919[dwos 218 ‘parapisuos ysnfl asoy) se
yons ‘sAes vwwen -suoifar ssuuy ay) up Kjuo doejd axey snyy pue
Mo ;01 JO JopIo 2y jo saumesaduwiay axinbar ‘uns ayy uy suonoeas
Je3[ONUOWLIAYY SB INID0 A3Y) uUdyM ‘SUOIRII YONS ey} pappe
9q sdeyiad pinoys 1] | 'par1asqo usaq aaey AS1ous paroadxs ayy
Jo sfes 4 pue ‘A101vI0QR[ 34} UL PIIPNIS USIQ Sey $59004d SIYL

AN SE =
nof ey 01 X 88 =
9101 X 0°6 X g0 X 86 = out = 3

W(g-1) ‘b3

6561 0K MIN ‘moYy pue sadisy Hooqudlo ], Jadirp ‘('pa
‘ddityag v d) ‘11 "IOA ‘Istuas-saydosopyg ujasurg 1aquy uy A81u3 pus
BRISUL,, ADNIT S2NUT UOA | 33 ‘uonisanb suy jo UoISSNISIP Juy v 10,
Aq uaa1d st uojoyd reyy jo £815ud YL “(6~1) ‘bz Aq pasearp
-ut se (Kes 4 €) uojoyd v £q Yo parireod s ssews Jo unowe sy

81 9p-01 X 86 $S20X3 SSEN
8500°S SnI[INU 3,
9610°¢ a+d
Leve'e uoINag

8N ;301 X ¥2L9'L uol01g

:sanfea jewrxordde oyy o1e 219 “a1es [ewioU
S} Ul 9H, Jo ssew ayy uey) 1jeaI3 1 UONBUIQUIOD SIY JO Ssew
o 'sn moys sjuswRINSEIW 1PWodads-ssewr se ‘ng "9H,
JO uonisodwod responu Yy St YINYM ‘UONAU U0 pue suojod
01 Jo wrdysAs e Sunjew ‘(uoxynsu suo pue uojoid suo Suureiuod
‘7-uadoipAy Jo snajonu o)  wosaMap ® yum sasny uojoad y

61 A+9He ~a+d

siy sty csuoyoyd jo £3i5ud
oY) pue Janew AreulpIo Jo ssew 3y Jo doudpeamba ay jo sjdwre
-X3 10311p AjqedJsewas pue ojdwis v 1 31 asnesaq ‘asvy Suruon
-udw yuom Apemonied s sdays o8y} Jo suQ sdays oyeredss
TeJoA3s ut aoeld soyes sseoo1d oy pue ‘woje wnipRy 2uo Pim dn
PU? 0 swoje uaBoIpAY Inoj sy ‘asIN0d Jo “Jsnu suQ ‘(3H,)
iRy 03 papaauod st (H,) usdorpAy yoym £q oouonbas oy
SI Yorym Juowre Joryd ‘suopoeas Jesponu Jo sureyd ydnoiyy noqe
SaWoo sy, “1edk 15d ssews s,uns oy jo ¢101 ut 1red | noqe Ljuo
$131 y3noy uaad ‘ssoj pider Apparssarduur ue—238/5001 .0 X §p
noqe Jo drer 3y 1e Juisearddp s1 uns ayy Jo ssewr Ay jey) Jjut
ued am ‘(8-1) by pue a8y sy usain pw/suem 01 X ¢e°]
JO 9.l o3 3e uns oy woly sn Buyyoeas st AF1oud juerpes jeyy sn
SII91 UONBAISSQQ uns dYy se Yons sIels Ul FULINSOO SUONIEII
Jedponuowsdayy £4q papiaosd st ‘9oualsIxs FumMUNUOD INO IMO oM
Yo1ym 03 ‘sdudpeamnba £31sus-ssew oy jo opdwexs swid sy,
{ “A813u9 jo enyauy oy jo srdounid [esouad e—(g-1) "by £q pauyep
judeAInba ssew oy sey wioj Aue ur AFious ey} vapr oy 03
P31 Appoinb a1e om puy A315ua [ewayy oy3 03 uonippe ue ysnf
$2woaq Aprewnn pue suojoyd jo A%1ous oy se uonesynuIpy
§31 $950] ) ‘paqiosqe u2aq sey A810ud oYy 2ouQ "wonsod YL Jo
SSEW 3Y3 01 YONIPPE UB SUBIW PUd JPYI0 Y} e UONEIPLI Y} JO -
uondiosqe 3y ‘asiMINI] ‘sseur [enusur s) ut ‘, 9/ junouwre oy




$1500 WL Ol

0 uonnaN

$99800'T  o-01 X 6Z6¥.9'1
9UTLO0T L OUXETIUUIT -0l X091+ uojoty
»-0L X 664 S8Y'S 1«01 XO06E601'6  -O0IX09T—  uonmN[g
(mawpn (3 swesBorpy ©) 28y aprred
SSU JUOJY suparg
seejy
wory Ay uj sappaey jo sopadord  I'If a1qr
UM S16 ¥66°ST = ssww dnuoje)
o% %59«25?&?@:33335 ¥
(N €00 910°Z = s5%w dpuoye)
Fif wnnpy 105 (A9 w) ABeus Supwq oy pud ‘gL
(D 6€S 186'9Z == s5¥W duOzv)

TV} wnunumpe Joj (A3 u) A819us Surpuq oy pu 21 !

sures8opy (q) pue sum ssww dpuoje (€) Uy Jomsue
moA ssaadxq n g61 ££6'gS Jo sewu spmoe ue sey Yorym 0O

/%aéaaﬁ:coﬁwoﬁsﬁvgwﬁ%g ‘It

nwe g¢00y  SHy

nue 9L10°€ He
:anmoog Hy +sIsSRU WO

*d 1S 1 $uB jo (ud 1d ¢ wmoqe
ySnonpy 191em jo 8 | 9ste1 03 SN0l Ty SN} i

ood oy 95181 03 (Hg) Wnhiti AUl Joj

adusd)
104001 01 07 Wolj 2Im .§~ s1 wsAs Supneay Ay Bununssy

£ed 94 S0P Yonw Moy Uy
£819u2 yuwipes + 9H, + Hg + Hy
U028l UoIsy

2y sasn 9y sesodund Sunway JOJ U Ut JeM ays Suproq \M,.s dww.w
Busurums 1=, 01 SIY IZIHINS 0 $IPI2OP TBUOL[JIG JHIUIIN UY

#

: “un o[8urs € se sarow 3 Yoym us
—uonenaess Suipnjour—ixauo0o Jeonureudp £1949 ul woje sjoym
N ZUNIVIVYD 03 $IAIS 31 PR sIsYIuhs SIqns pue dqexiew
=31 ® JO 3InS31 9y ST WO U JO Ssew Oy} ‘udyy ‘swidy Isays uj
‘133008 U0 Wolj paresedas [v a19m Aoy) J1 uey) I st uoneindy
=002 siy} uy £319u9 (2303 1PYY Jep 19e) 2y3 wo spuadap 219409 0}
5uImnsuod Yl Jo Liiqe syy, “ssew sy uy I5B2123p 10 I5RAIOUI
PILIOOSSE UB itm ‘71 JO IO 10 out A313us Jo moy e £q patued
“WIoe $1 Woe AP Jo NMs [eusur Yy ur Fueyd Auy (g un
~sks oy Jo ssew €101 oy 03 uonnqUIIuod 2ano8au ¢ sYuIsasda

~ Aeonewoine sopnsed omy usamisq uondwIe Jo 2105 € 1By

YON) “suondvINuUY JeIAONU pue [eOLNO9[2 19yl Jo A310u2 [enun
-od o3 woyy (sanedou Apueunuopaid), sufis yioq jo suonnq
~Huod pue ‘siuwsmnsuod Fupow Anyms s Jo saidious oneury
9n woyy suONNQIIUCD dAnisod SUTEIU0D oYM € Se WO I

" JO ssew oy (34 ompnns souy s1 215y ‘Ajdasp 0w aqoad

01 Juem oM J1 pue) suojord pue ‘SUOINIU ‘SU0AY Jo A|quidsse
pareondwiod € 5131 “a8pojmouy Aep-juasasd Jo yutodpuess oY) woy
WOJe JuIes SIY) JOPISUOD MOU Ing SSEW Y [[€d IM Jey) Kinuenb
93uis v £q paquosop 9q pinoys Auadosd Jeruauy s,wole i ey

| . $MOIAQO I50WTE SIS 3y PUB ‘O51TE J0U S0P diMpoNAYS s15uut Aue jo

uonsanb sq 14 SO1IRY S]qeAow *31qenduadu ‘prey ‘Assew
‘PI0S,, P3I[Ed UOIMIN 1BYM JO UONOIN[0D ® JO 2u0 3snl st 31 MmoIA
Jo jutod 2uo wosy “yopew Areurpio Jo 2091d v Ul wole [ennsu
‘o[3uis © JopIsu0s 0) 87 ousEAINDbO AB1oud-ssEW ayy Jo 1ndeseyd
aatseasdd ayy gercadde 03 skem 3s9q oy jo suo sdeysdy

‘ML JUO 03Ul PONUN UG dAeY
A34) Ayaneras Jo L3091 9y jo suean Ag "0 Yoes Jo juapuad




