Chapter 3

Vectors




3.2 Vectors and Scalars

 Quantities which indicate both magnitude
and direction

« Examples: displacement, velocity,
acceleration

Scalars

 Quantities which indicate only magnitude

« Examples: Time, speed, temperature,
distance



3.2 Vectors and Scalars

Arrows are used to represent vectors.
» The length of the arrow signifies magnitude

» The head of the arrow signifies direction
Fig. 3-1 (a) All three arrows have the

B same magnitude and direction and thus
represent the same displacement. (b) All

A three paths connecting the two points cor-
B"
B
A U
A
(a

respond to the same displacement vector.
)

(b)

Sometimes the vectors are represented by bold lettering,
such as vector a. Sometimes they are represented with

arrows on the top, such as a



3.3 Adding Vectors Geometrically

Vector a and vector b can be added geometrically to yield the
resultant vector sum, c.

s =a-+ b.

Place the second vector, b, with its tail touching the head of the first
vector, a. The vector sum, s, is the vector joining the tail of a to the
head of b.

~__——Toadd &and b,
— draw them
a b head to tail.

= >
Y



3.3 Adding Vectors Geometrically

Some rules:

da+b=b+d (commutative law).

(a@ + B}] +¢c=4ad+ (3 + 7) (associative law).

b+ (=b)=0.

d=d-b=4d+ (—F] (vector subtraction)



In an orienteering class, you have the goal of moving as far
(straight-line distance) from base camp as possible by mak-
ing three straight-line moves. You may use the following
displacements in any order: (a) @, 2.0 km due east (directly
toward the east); (b) b.2.0 km 30° north of east (at an angle
of 30° toward the north from due east); (c) <, 1.0 km due
west. Alternatively, you may substitute either —b for b or
—¢ for €. What is the greatest distance you can be from base
camp at the end of the third displacement?

Reasoning: Using a convenient scale, we draw vectors a.b,
T, —b,and —7 as in Fig. 3-7a. We then mentally slide the
vectors over the page, connecting three of them at a time in
head-to-tail arrangements to find their vector sum d. The
tail of the first vector represents base camp. The head of the
third vector represents the point at which you stop. The vec-
tor sum d extends from the tail of the first vector to the head
of the third vector. Its magnitude d is your distance from
base camp.

We find that distance d is greatest for a head-to-tail
arrangement of vectors @, b, and —C. They can be in any
order, because their vector sum is the same for any order.

3.3 Adding Vectors Geometrically: Sample Problem

a
ﬂ —_ —_
s =
—_— = E’
______ %G‘_c'___ d=b+a-c
‘3_? _"'? This is the vector result
for adding those three
ocale ofkm vectors in any order.
0 1 2

(a) ()

Fig. 3-7 (a) Displacement vectors; three are to be used. (b) Your
distance from base camp is greatest if you undergo displacements
d,b,and —¢,in any order.

The order shown in Fig. 3-7b 1s for the vector sum
d=b+7+ (-2

Using the scale given in Fig. 3-7a, we measure the length d of
this vector sum, finding

d=48m. (Answer)



3.4 Components of Vectors

The component of a vector along an axis is the projection of the vector
onto that axis.

The process of finding the components of a vector is called resolution
of the vector.

In 3-dimensions, there are three components of a vector along pre-
defined x-, y-, and z-axes.

This is the y component
of the vector.

a, The components and the
(¢  vector form a right triangle.

x
]

(a)

This is the x component
of the vector.

Fig. 3-8 (a)The components a, and a, of vector d.(b) The components are unchanged if the
vector is shifted, as long as the magnitude and orientation are maintained. (c) The components
form the legs of a right triangle whose hypotenuse is the magnitude of the vector.



3.4 Components of Vectors

We find the components of a vector by using the right triangle rules.

This is the x component
/ of the vector.
b,=7m
' x(m)

a
. a="Va:+a® and tanf=—
This is the y component . dy

of the vector.

Fig. 3-9 The component of b on the x
axis 1s positive, and that on the y axis is
negative.



Example, Vectors:

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. How far east and north is the airplane
from the airport when sighted?

KEY IDEA ¥

We are given the magnitude (215 km) and the angle (22°
east of due north) of a vector and need to find the compo- 200
nents of the vector.

Calculations: We draw an xy coordinate system with the
positive direction of x due east and that of y due north (Fig.
3-10). For convenience, the origin is placed at the airport.
The airplane’s displacement d points from the origin to
where the airplane is sighted.

Distance (km)
z

To find the components of d. we use Eq. 3-5 with # = #__U o0 x
687 (= 90° — 22°): Y
( ) Distance (km)
dy = dcos 8 = (215 km)(cos 687)
= 81 km (Answer)

Fig. 3-10 A plane takes off from an airport at the origin and is

d, = d'sin 0 = (215 km)(sin 68°) later sighted at

=199 km =~ 2.0 X 102 km. (Answer)

Thus, the airplane is 81 km east and 2.0 X 10? km north of
the airport.



3.4 Problem Solving Checkpoints

Angles measured
counterclockwise will
be considered positive,

and clockwise negative.

Change the units of the
angles to be consistent.

Use definitions of trig
functions and inverse
trig functions to find
components.

Check calculator results.

Check if the angles are
measured
counterclockwise from

the positive direction of
the x-axis, in which case
the angles will be
positive.




3.5 Unit Vectors

A unit vector Is a vector of unit
magnitude, pointing in a particular
direction.

The unit vectors point
along axes.

Unit vectors pointing in the x-, y-,
and z-axes are usually designated by

N

i,jk respectively

Fig. 3-13 Unit vectors1, ], and k define
the directions of a right-handed coordinate
system.

Therefore vector,

with components a, and a, in the x-

and y-directions,

can be written in terms of the

following vector sum: a=ai+a|]



3.6 Adding Vectors by Components

I F—a+b.
then Fy = dy + b.l’
ry =a, + b}.
r,=a,+ b,

Therefore, two vectors must be equal if their corresponding

components are equal.

The procedure of adding vectors also applies to vector

subtraction.
Therefore,

where

= .

—
d—b

——>

d=dji+dj+dk

d,=a, —

b,

d,=a,— b, and

d,=a, — b,




Example, Vector Addition:

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xv coordinate system. in the directions shown in
Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector Hnel. and what are those of the homeward vec-
tor dyome that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs. =

KEY IDEAS

(1) To find the net displacement d e, We need to sum the
five individual displacement vectors:

dwy=d,+dy+ ds+d, + ds.
(2) We evaluate this sum for the x components alone,
Aperx = dix + doy + day + dyy + dsy,
and for the y components alone,
dpery = dhy + dyy + d3y + dyy + ds,.

(3) We construct d, from its x and y components.

Calculations:

dy, = (6.0cm) cos0” = +6.0 cm

dry = (6.0 cm) cos 150” = —5.2 cm
dz; = (6.0 cm) cos 180 = —6.0 cm
d,, = (6.0 cm) cos(—120°) = —3.0 cm
ds, = (6.0 cm) cos 90" = 0.

dperx= +6.0cm + (=52 cm) + (—6.0 cm)
+ (—3.0cm) + 0

= —8.2 cm. ety = +3.8 cm.

TABLE 3-1

Run d, (cm) d, (cm)
1 +6.0 0

2 -52 +3.0
3 —6.0 0

4 —3.0 -5.2
5 0 +6.0
net —8.2 +3.8

Vector d_,, and its x and y components are shown in
Fig. 3-16b. To find the magnitude and angle of d ., from its
components, we use Eq. 3-6. The magnitude is

dnet = v d%et.x + d%et,y

= V(=82 cm) + (3.8cm)? = 9.0 cm.

To find the angle (measured from the positive direction of
x),we take an inverse tangent:

d
— tan™] net,y )
f o ( dnet,_x

3.8 cm

= tan"! (m) = —24.86°.



Example, Vector Addition:

Note:

To add these veciors,
find their net x component
and their net y component.

{Final y
dg

E:J =
120° 150° N
307 30°
— L= x
F d
dy Home !
(a)
Then arrange the net This is the result of the
components head to tail. addition.
/—Fina] ¥ Final y
Enet dhome
3.8 cm
— X
8.2cm /
H
Home ome

(b) (c)

Caution: Taking an inverse tangent on a calculator may not
give the correct answer. The answer —24.86° indicates that
the direction of d_, is in the fourth quadrant of our xy coor-
dinate system. However, when we construct the vector from
its components (Fig. 3-16b), we see that the direction of Hnet
is in the second quadrant. Thus, we must “fix” the calcula-
tor’s answer by adding 180°:

= —24.86" + 180° = 155.14" = 155"
Thus, the ant’s displacement Hnet has magnitude and angle

dper = 9.0 cm at 155°. (Answer)

Vector d . directed from the ant to its home has the

hom
same magnitude as Ffm but the opposite direction

(Fig. 3-16¢). We already have the angle (—24.86° = —25°)

for the direction opposite d .. Thus, Hh has magnitude
Ome

and angle

net*

Apome = 9.0 cm at —25°, (Answer)

A desert ant traveling more than 500 m from its home will
actually make thousands of individual runs. Yet, it some-
how knows how to calculate Hhome (without studying this
chapter).



3.7 Vectors and the Laws of Physics

Freedom of choosing a coordinate system

Relations among vectors do
not depend on the origin or
the orientation of the axes.

Relations in physics are y
also independent of the
choice of the coordinate
system.

Rotating the axes
changes the components
but not the vector.




3.8 Multiplying Vectors

A. Multiplying a vector by a scalar

Multiplying a vector by a scalar changes the
magnitude but not the direction:

axs =sa




3.8 Multiplying Vectors

B. Multiplying a vector by a vector: Scalar (Dot) Product

The scalar product between
two vectors is written as:

—

a-b

It 1S defined as:

Here, a and b are the
magnitudes of vectors a
and b respectively, and
¢ Is the angle between
the two vectors.

The right hand side is a
scalar quantity.

(a)

Component of E:
along direction of
ais bcos ¢

Multiplying these gives
the dot product.

Component of a
along direction of

—

bis acos @

Or multiplying these
(&)

gives the dot product.

Fig. 3-18 (a) Two vectors @
and b, with an angle ¢ between

them. (b) Each vector has a
component along the direction

of the other vector.



3.8: Multiplying Vectors

C. Multiplying a vector with a vector: Vector (Cross) Product

The right-hand rule allows us to find the

The vector product between neri
direction of vector c.

two vectors a and b can be

writtenas:
ax b
—)
The result 1s a new vector c, A 4
which is: 2 e
y - Va
¢ = ab sin ¢, l

Here a and b are the

magnitudes of vectors a a

and b respectively, and ¢

IS the smaller of the two f

angles betweenaand b Y 4

vectors. TN s A D N A

—_—
of vector¢ = @ x b.



3.8: Multiplying Vectors: Vector product in unit-vector notation

G x b =(aj + ay) + a,k) x (b + b, + b.k)

= (ayb; — bya)i + (a:by — b;ay)j + (ashy — byay)k.

Note that: aji x bi=ab(ixi)=0.

And,

ai X b},j = ﬁxb}.(i X j)= ﬂxb}.ﬁl



Sample Problem: Vector Product

In Fig. 3-20, vector @ lies in the xy plane, has a magnitude of
18 units and points in a direction 250 from the positive di-
rection of the x axis. Also, vector b has a magnitude of
12 units and points in the positive direction of the z axis. What
is the vector product € = @ X b?

z

Sweep Finto b.

This is the resulting

vector, perpendicular to
both & and b.

= ¥

Fig. 3-20 Vector ¢ (in Lhe xy plane) is the vector (or cross)
product of vectors @ and b.

KEY IDEA

When we have two vectors in magnitude-angle notation, we
find the magnitude of their cross product with Eq. 3-27 and

the direction of their cross product with the right-hand rule
of Fig. 3-19.

Calculations: For the magnitude we write
¢ = absin ¢ = (18)(12)(sin 90%) = 216. (Answer)

To determine the direction in Fig. 3-20, imagine placing the
fingers of your right hand around a line perpendicular to the
plane of @ and b (the line on which € is shown) such that
your fingers sweep @ into b. Your outstretched thumb then

gives the direction of €. Thus, as shown in the figure, € lies in
the xy plane. Because its direction is perpendicular to the

direction of @ (a cross product always gives a perpendicular
vector), it is at an angle of

2507 = 90" = 160° (Answer)

from the positive direction of the x axis.



Sample Problem: Vector product, unit vector
notation

Ifd@ =3i —4j and b = —2i + 3k, whatis@ =7 x b?

KEY IDEA
When two vectors are in unit-vector notation, we can find
their cross product by using the distributive law.
Calculations: Here we write
T = (31 — 4)) x (=21 + 3k)
=30 x (=2i) + 3i % 3k + (—4j) x (-20)
+ (—4j) x 3k.

N\

We next evaluate each term with Eq. 3-27, finding the
direction with the right-hand rule. For the first term here,
the angle ¢ between the two vectors being crossed is 0. For
the other terms, ¢ 1s 90°. We find

T = —6(0) + 9(—]) + 8(—k) — 12i
= —121 — 9j - 8k. (Answer)
This vector € is perpendicular to both @ and b, a fact you
can check by showing that ¢-@ = 0 and ©- b = 0; that is,

there is no component of € along the direction of either
daorb.



