Chapter 6

Force and Motion-I|




6.2 Friction

Frictional forces are very common 1n our
everyday lives.

Examples:
1. If you send a book sliding down a horizontal surface, the

book will finally slow down and stop.
2. If you push a heavy crate and the crate does not move,
then the applied force must be counteracted by frictional

forces.



6.2 Frictional Force: Motion of a crate with applied forces
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There is no attempt at
sliding. Thus, no friction
and no motion.

NO FRICTION

Force F attempts
sliding but is balanced
by the frictional force.
No motion.

STATIC FRICTION

Force F is now
stronger but is still
balanced by the
frictional force.
No motion.
LARGER STATIC
FRICTION

Force F is now even
stronger but is still
balanced by the
frictional force.

No motion.

EVEN LARGER
STATIC FRICTION
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Finally, the applied force
has overwhelmed the
static frictional force.
Block slides and
accelerates.

WEAK KINETIC
FRICTION

To maintain the speed,
weaken force F to match
the weak frictional force.
SAME WEAK KINETIC
FRICTION

Static frictional force
can only match growing
applied force.

Kinetic frictional force
has only one value
(no matching).

f, is the static frictional force

f, is the kinetic frictional force



6.2 Fricti . .
reton » Static frictional force acts when there is
no relative motion between the body and

the contact surface

» The magnitude of the static frictional
force increases as the applied force to
the body Is increased

»Finally when the there is relative motion
between the body and the contact surface,
Kinetic friction starts to act.

»Usually, the magnitude of the kinetic frictional force,
which acts when there is motion, is less than the
maximum magnitude of the static frictional force,

which acts when there Is no motion.



6.2 Friction

Often, the sliding motion of one surface over
another 1s “jerky” because the two surfaces
alternately stick together and then slip.

Examples:

*Tires skid on dry pavement
*Fingernails scratch on a chalkboard
A rusty hinge is forced to open

*A bow is drawn on a violin string



6.3 Properties of Friction

Property 1. If the body does not move, then the static frictional force and
the component of F that is parallel to the surface balance each other. They
are equal in magnitude, and is f, directed opposite that component of F.

Property 2. The magnitude of has a maximum value f; ., that Is given by

fs max  Ms F.-"w"

where L is the coefficient of static friction and F is the magnitude of the
normal force on the body from the surface. If the magnitude of the component
of F that is parallel to the surface exceeds f ,,, then the body begins to

slide along the surface.

Property 3. If the body begins to slide along the surface, the magnitude of the
frictional force rapidly decreases to a value f, given by
fi = mkFy

where p, is the coefficient of kinetic friction. Thereafter, during the sliding, a
Kinetic frictional force f, opposes the motion.



Sample Problem

If a car’s wheels are “locked™ (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a) —the marks were 290 m long! Assuming
that p, = 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked? Mo

290 m
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y
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This is a free-body Normal force
diagram of the supports the car.
forces on the car.
P | Car .
i
Frictional force Gravitational force
opposes the sliding. | pulls downward.
Iy
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Assume that the constant acceleration a was due only to a
kinetic frictional force on the car from the road, directed
opposite the direction of the car’s motion. This results in:

—fr = ma,
where m is the car’s mass. The minus sign indicates the
direction of the kinetic frictional force.

Calculations: The frictional force has the magnitude

fe = P,

where Fy is the magnitude of the normal force on the car
from the road. Because the car is not accelerating vertically,

Fy= mag.

Thus, fe =uFn = mmg

a=-f/m= -ymg/m=-4g,

where the minus sign indicates that the acceleration is in
the negative direction. Use

Vi =V +2a(Xx—x,)

where (X-X,) =290 m, and the final speed is 0.
Solving for v,

V, =/214,9(x—X,) =58m/s

We assumed that v = 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left
the road after 290 m. So v, was at least 210 km/h.



Sample Problem: Friction applied at an angle

F
In Fig. 6-4a. a block of mass m = 3.0 kg slides along a floor L AB/V F,
while a force F of magnitude 12.0 N is applied to it at an up- ~
ward angle 6. The coefficient of kKinetic friction between the
block and the floor is g, = 0.40. We can vary € from 0 to 90°
(the block remains on the floor). What ¢ gives the maximum

il

value of the block’s acceleration magnitude a? ; F ib
~6 1 )
<} * £=
F, = F,
* S
(c) (d)

Calculating Fy: Because we need the magnitude f, of the
frictional force, we first must calculate the magnitude Fy of
the normal force. Figure 6-4b is a free-body diagram show-

ing the forces along the vertical y axis. The normal force is Fcos 6 — uFy = ma.

upward, the gravitational force F, with magnitude mg is F F

downward. and (note) the vertical component F), of the ap- a=——cosf — ,uk(g — ——sin B).
m

plied force is upward. That component is shown in Fig. 6-4c,
where we can see that F, = Fsin 6. We can write Newton’s
second law (F,,, = ma) for those forces along the y axis as

Finding a maximum: To find the value of #that maximizes
a, we take the derivative of a with respect to ¢ and set the
result equal to zero:

Fy + Fsin 8 — mg = m(0), da F F
: = ——sin 6 + u, —cos 6 = 0.
Fy = mg — Fsin 6. df m He

Calculating acceleration a: Figure 6-4d is a free-body di- tan ¢ = u,.
agram for motion along the x axis. The horizontal compo-
nent F of the applied force is rightward; from Fig. 6-4c, we 6 = tan!
see that F, = F cos 6. The frictional force has magnitude f, a
(= weFy) and is leftward. Writing Newton’s second law for =21.8° = 22°,

motion along the x axis gives us



6.4 The Drag Force and Terminal Speed

When there is a relative velocity between a fluid and a body (either because the body
moves through the fluid or because the fluid moves past the body), the body
experiences a drag force, D, that opposes the relative motion and points in the
direction in which the fluid flows relative to the body.

Fig. 6-5 Thisskier crouchesin an “egg
position™ so as to minimize her effective
cross-sectional area and thus minimize the
air drag acting on her. (Karl-Josef
Hildenbrand/dpa/Landov LL.C)




6.4 The Drag Force and Terminal Speed

When a blunt body falls from rest through air, the

For cases in which air is the fluid, drag force is directed upward:; its magnitude

and the body is blunt (like a gradually increases from zero as the speed of the
baseball) rather than slender (like a  body increases. From Newton’s second law along y
javelin), and the relative motion is axis

fast enough so that the air becomes

turbulent (breaks up into swirls) D = kg =ma,
behind the body, where m is the mass of the body. Eventually, a = 0,
and the body then falls at a constant speed, called
D = \CpAv2, the terminal speed v, .
where p is the air density (mass per JCpAvV? — F, = 0,
volume), A is the effective cross-
sectional area of the body (the area F
of a cross section taken v, = |
CpA

perpendicular to the velocity), and
C is the drag coefficient .



6.4 The Drag Force and Terminal Speed

Some typical values of terminal speed

TABLE 6-1

Some Terminal Speeds in Air

Object Terminal Speed (m/s) 95% Distance? (m)
Shot (from shot put) 145 2500
Sky diver (typical) 60 430
Baseball 42 210
Tennis ball 31 115
Basketball 20 47
Ping-Pong ball 9 10
Raindrop (radius = 1.5 mm) 7 6
Parachutist (typical) 5 3

“This is the distance through which the body must fall from rest to reach 95% of its terminal speed.

Source: Adapted from Peter J. Brancazio, Sport Science, 1984, Simon & Schuster, New York.



Sample Problem: Terminal Speed

A raindrop with radius R = 1.5 mm falls from a cloud that is
at height 7 = 1200 m above the ground. The drag coefficient
C for the drop is 0.60. Assume that the drop is spherical
throughout its fall. The density of water p,, is 1000 kg/m?,
and the density of air p, is 1.2 kg/m>.

(a) AsTable 6-1 indicates, the raindrop reaches terminal speed
after falling just a few meters. What is the terminal speed?

KEY IDEA

The drop reaches a terminal speed v, when the gravitational
force on it is balanced by the air drag force on it, so its accel-
eration is zero. We could then apply Newton’s second law
and the drag force equation to find v,, but Eq. 6-16 does all
that for us.

Calculations: To use Eq. 6-16, we need the drop’s effective
cross-sectional area A and the magnitude F, of the gravita-
tional force. Because the drop is spherical, A is the area of a
circle (7R?) that has the same radius as the sphere. To find
F,, we use three facts: (1) F, = mg. where m is the drop’s
mass; (2) the (spherical) drop’s volume is V' = %’n’RS: and (3)
the density of the water in the drop is the mass per volume,
or p,, = m/V.Thus, we find

F,= Vp,g =37Rp,g.

We next substitute this, the expression for A, and the given data
into Eq. 6-16. Being careful to distinguish between the air den-

sity p, and the water density p,,, we obtain

\j 2k, \/8wR3pwg [8Rp,g

"N Cp,A  V3ComRE NV 3Cp,
B \f (8)(1.5 X 1073 m)(1000 kg/m?)(9.8 m/s2)
B (3)(0.60)(1.2 kg/m?)
= 7.4 m/s ~ 27 km/h.

Note that the height of the cloud does not enter into the
calculation.

(Answer)

(b) What would be the drop’s speed just before impact if
there were no drag force?

KEY IDEA

With no drag force to reduce the drop’s speed during the fall,
the drop would fall with the constant free-fall acceleration g,
so the constant-acceleration equations of Table 2-1 apply.

Calculation: Because we know the acceleration is g, the
initial velocity vy is 0, and the displacement x — x; is —h, we
use Eq.2-16 to find v:

v = V2gh = V(2)(9.8 m/s?)(1200 m)
— 153 m/s ~ 550 km/h.

Had he known this, Shakespeare would scarcely have writ-
ten, “it droppeth as the gentle rain from heaven, upon the
place beneath.” In fact, the speed is close to that of a bullet
from a large-caliber handgun!

(Answer)



6.5 Uniform Circular Motion

Uniform circular motion:

A body moving with speed v In
uniform circular motion feels a
centripetal acceleration directed
towards the center of the circle of

radius R.

Examples:
1. When a car moves in the circular

arc, it has an acceleration that is
directed toward the center of the
circle. The frictional force on the
tires from the road provide the
centripetal force responsible for
that.

In a space shuttle around the earth,
both the rider and the shuttle are in
uniform circular motion and have
accelerations directed toward the
center of the circle. Centripetal
forces, causing these accelerations,
are gravitational pulls exerted by
Earth and directed radially inward,
toward the center of Earth.



6.5 Uniform Circular Motion

Example of a hockey puck:

Fig. 6-8 An overhead view of a hockey puck moving
with constant speed v In a circular path of radius R
on a horizontal frictionless surface. The centripetal
force on the puck is T, the pull from the string,
directed inward along the radial axis r extending
through the puck.



6.5 Uniform Circular Motion

A centripetal force accelerates a body by changing the
direction of the body’s
velocity without changing the body’s speed.

From Newton’s 2" Law:

F=m-— (magnitude of centripetal force).

R

Since the speed v here is constant, the magnitudes of the
acceleration and the force are also constant.



Sample Problem: Vertical circular loop

In a 1901 circus performance, Allo “Dare Devil” Diavolo
introduced the stunt of riding a bicycle in a loop-the-loop
(Fig. 6-9a). Assuming that the loop is a circle with radius
R = 2.7 m, what is the least speed v that Diavolo and his
bicycle could have at the top of the loop to remain in con-

tact with it there? —
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(a)
¥
Diavolo
and bicycle
% 2 The net force

provides the
toward-the-center
acceleration.

KEY IDEA

We can assume that Diavolo and his bicycle travel through
the top of the loop as a single particle in uniform circular
motion. Thus, at the top, the acceleration @ of this particle
must have the magnitude a = v*/R given by Eq. 6-17 and be
directed downward, toward the center of the circular loop.

Calculations: The forces on the particle when it is at the
top of the loop are shown in the free-body diagram of Fig 6-
9b. The gravitational force F is downward along a y axis; so is
the normal force Fy on the partlcle from the loop; so also is
the centripetal acceleration of the particle. Thus, Newton’s
second law for y components (Fy, = ma,) gives us

—Fv—F,=m(—a)

s =~
— Iy — mg=—m —?.

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that Fy = 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for Fy in Eq. 6-19,solving for v,
and then substituting known values give us

v = VeR = V(9.8 m/s?)(2.7 m)
= 5.1 mJs.

and

(Answer)



Sample Problem: Car in flat circular turn

Figure 6-10a represents a Grand Prix race car of mass
m = 600 kg as it travels on a flat track in a circular arc of
radius R = 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift FL down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the

-—

four tires are identical.) —

The toward-the-

Friction: toward the —\
center

Fig. 6-10

—
v

Normal force:
helps support car

Car

Gravitational force:
pulls car downward

center force is (a) Track-level view (&) Negative lift: presses
the frictional force. of the forces car downward

Radial calculations: The frictional force f,isshown in the
free-body diagram of Fig. 6-105b. It is in the negative direc-

tion of a radial axis r that always extends from the center of
curvature through the car as the car moves. The force pro-
duces a centripetal acceleration of magnitude v*R. We can
relate the force and acceleration by writing Newton’s sec-
ond law for components along the r axis (Fy, = ma,) as

—f.=m (—%2 )

Vertical calculations: Next, let’s consider the vertical
forces on the car. The normal force FN is directed up, in the
positive direction of the y axis in Fig. 6-10b. The gravita-
tional force F = mg and the negative lift FL are directed
down. The ‘1cceler‘1t10n of the car along the y axis is zero.
Thus we can write Newton’s second law for components
along the y axis (Fyer, = ma,) as

Fy—mg— F, =0,

or Fy=mg+ F;.
Substituting f; .« = .y for £, leads us to
(%)
Fv=m|— |
by =m | —
Fo=m{im =
Combining results: L=MULR 8
(28.6 m/s)> )
= (600 k — 9.8 m/s?
(600 ke) ( (0.75)(100 m) ms

= 663.7 N = 660 N. (Answer)



Sample Problem: Car in flat circular turn, cont.

Friction: toward the —
center \

The toward-the-
center force is (a)
the frictional force.

(b) The magnitude F, of the negative lift on a car
depends on the square of the car’s speed V2, just
as the drag force does .Thus, the negative lift on
the car here is greater when the car travels faster,
as it does on a straight section of track. What is
the magnitude of the negative lift

for a speed of 90 m/s?

Calculations: Thus we can write a ratio of the
negative lift F|_g, at v =90 m/s to our result for the
negative lift F_at v =28.6 m/s as

Fr o (90 m/s)?

F; (28.6 m/s)?”

Track-level view (&)
of the forces

Normal force:
helps support car

Car
r

Cen ter—\ II*. f.

Gravitational force:
pulls car downward

Negative lift: presses
car downward

Using F_ =663.7 N,

F, oy = 6572 N = 6600 N.

Upside-down racing: The gravitational force is, of
course, the force to beat if there is a chance of racing
upside down:

F, = mg = (600 kg)(9.8 m/s?)

£

= 5880 N.



