Chapter 7

Kinetic Energy and Work
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7.2 What is Energy?

One definition:

Energy Is a scalar quantity associated with
the state (or condition) of one or more
objects.

Some characteristics:

1. Energy can be transformed from one type to another and
transferred from one object to another,

2. The total amount of energy is always the same (energy is
conserved).



7.3 Kinetic Energy

Kinetic energy K is energy associated with the state of
motion of an object. The faster the object moves, the greater
IS its Kinetic energy.

For an object of mass m whose speed v is well below the
speed of light,

1 2

K = v (kinetic energy).

The Sl unit of Kinetic energy (and every other type of
energy) is the joule (J),

1 joule =1J =1 kgm?/s2.



Sample Problem

In 1896 in Waco, Texas, William Crush parked two locomo-
tives at opposite ends of a 6.4-km-long track, fired them up,
tied their throttles open, and then allowed them to crash
head-on at full speed (Fig. 7-1) in front of 30,000 spectators.
Hundreds of people were hurt by flying debris; several were
killed. Assuming each locomotive weighed 1.2 X 10° N and
its acceleration was a constant 0.26 m/s?, what was the total
kinetic energy of the two locomotives just before the
collision? =

Calculations: We choose Eq. 2-16 because we know values
for all the variables except v:

v2 = vd + 2a(x — xy).
With vy = 0 and x — x, = 3.2 X 10° m (half the initial sepa-
ration), this yields
v2 =0+ 2(0.26 m/s?)(3.2 X 10° m).
or v = 40.8 m/s

(about 150 km/h).

Fig. 7-1 The aftermath of an 1896 crash of two locomotives.
(Courtesy Library of Congress)

We can find the mass of each locomotive by dividing its
given weight by g:
1.2 X 10°N
= = 1.22 X 10° kg.
T TR me :

Now, using Eq. 7-1, we find the total kinetic energy of
the two locomotives just before the collision as

K =2(Gmv?) = (1.22 X 105 kg)(40.8 m/s)?
=2.0 x 1087J. (Answer)
This collision was like an exploding bomb.




7.4 Work

Work W is energy transferred to or from an
object by means of a force acting on the
object.

Energy transferred to the object is positive
work, and energy transferred from the
object Is negative work.



7.5 Work and Kinetic Energy

+— T'his component

To calculate the work a force \
, does no work.

F does on an object as the \
object moves through some |

displacement d, we use only ., e,
the force component along the Bead~ [ _

C ~——This component
object’s displacement. The does work.

force component perpendicular
to the displacement direction

does zero work. A constant force directed at angle ¢ to the
displacement (in the x-direction) of a bead
does work on the bead. The only component of

For a constant_force F, the force taken into account here is the x-
work done W is: component.

W=F-d =Fdcosd

When two or more forces act on an object, the net work done on the
object is the sum of the works done by the individual forces.



7.5 Work and Kinetic Energy

Work-kinetic energy theorem

The theorem says that the change In kinetic
energy of a particle Is the net work done on

the particle.
change in the kinetic\  /net work done on
energy of a particle /| the particle

It holds for both positive and negative work: If the net work
done on a particle 1s positive, then the particle’s kinetic
energy increases by the amount of the work, and the

converse IS also true.



Sample Problem: Industrial spies

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement d of magnitude
8.50 m, straight toward their truck. The push F, of spy 001 1s

12.0 N, directed atan angle of 30.0” downward from the hor-

izontal: the pull B of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor

and safe make frictionless contact.
Spy 002

do work.

Safe

Only force components
parallel to the displacement

(a) (b)

(a) What is the net work done on the safe by forces F1 and

F, during the displacement d?

Calculations: From Eq. 7-7 and the free-body diagram for

the safe in Fig. 7-4b, the work done by 1_3' is

W, = Fid cos ¢p; = (12.0 N)(8.50 m)(cos 30.07)

= 88.33 ],

and the work done by 1_3'; is

W, = Fod cos ¢ = (10.0 N)(8.50 m)(cos 40.07)

= 65.11 1.
Thus, the net work Wis

W=W, +W,=8833] +65.111]
= 15341 =153 1.

(Answer)

(b) During the displacement, what is the work Wg done on
the safe by the gravitational force ﬁ and what is the work
Wy done on the safe by the nolmal force Fy from the

floor?
Calculations: Thus, with mg as the magnitude of the gravi-

tational force, we write

W, = mgd cos 90° = mgd(0) =0  (Answer)
and Wy = Fydcos90” = Fyd(0) = 0. (Answer)
We should have known this result. Because these forces are

perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vy at the
end of the 8.50 m displacement?
Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

W=K,—K,= %mv;— — 2mvi.
The initial speed v; i1s zero, and we now know that the work
done is 153.4 J. Solving for v and then substituting known
data. we find that

. \X \K 2(153.41J)
I m 225 kg

= 1.17 m/s. (Answer)




Sample Problem: Constant force in unit vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement d = (— ?:Gm)l
whlle a steady wind pushes against the crate with a force

= (ZGN)I + (— 6DN]J The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

The parallel force component does
negative work, slowing the crate.
y

= N -
T

Fig. 7-5 Force F

slows a crate during

displacement d.
Calculations: We write

W=TF-d=[20N)i + (=6.0N)j]-[(=3.0 m)i].

Of the possible unit-vector dot products, only i-1, j-], and
k -k are nonzero (see Appendix E). Here we obtain

W= (20N)(—=3.0m)i-1 + (—6.0N)(—3.0m)j-1
= (=601)(1)+0=—-601. (Answer)

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

y

(b) If the crate has a kinetic energy of 10 J at the beginning

of displacement d,what is its kinetic energy at the end of d?
Calculation: Using the work-kinetic energy theorem in

the form of Eq.7-11, we have
Ki=K,+W=10]+(-60])=401. (Answer)

Less kinetic energy means that the crate has been slowed.



7.6 Work Done by the Gravitational Force

H{I{ = mgd cos ¢ (work done by gravitational force).

A Does
21 Upward _. hegative
! displacement Object—_ F work
A Does 7 Does
7 positive v © positive
work work
C}bi“t_/._, Does _.| Downward
V‘:'L' ;i@:iﬂ"fe dv displacement
(a) (B)
(a) An applied force lifts an (b) An applied force lowers an
object. The object’s object. The displacement of the
displacement makes an angle object makes an angle with the
¢ =180° with the gravitational gravitational force .The applied
force on the object. The force does negative work on the
applied force does positive object.

work on the object.



Sample Problem: Accelerating elevator cab

cable

An elevator cab of mass m = 500 kg is descending with speed
v; = 4.0 m/s when its supporting cable begins to slip, allowing
it to fall with constant acceleration@ = g/5 (Fig. 7-8a).

(a) During the fall through a distance d = 12 m, what is the
work W, done on the cab by the gravitational force F ?

Ca!cufat;on From Fig. 7-8b, we see that the angle between
the directions of F and the cab’s displacement d is 0°.
Then, from Eq. 7- 12 we find

W, = mgd cos 0° = (500 kg)(9.8 m/s?)(12 m)(1)

=588 X 104J = 59 k. (Answer)

(b) During the 12 m fall, what is the work Wy done on the
cab by the upward pull 7 of the elevator cable?

Calculations: We get
I' — F, = ma.
Wy = Tdcos ¢ = m(a + g)d cos ¢.

Next, substituting —g/5 for the (downward) acceleration a
and then 180 for the angle ¢ between the directions of
forces T and mg.we find

W = m(—% F g)dcosqb = %mgdcos b

4 ,
=3 (500 kg)(9.8 m/s”)(12 m) cos 180°

= —4.70 X 10*] = —47 k. (Answer)

Fig. 7-8

[>—'=

Does
negative
Cab \ work

=)

Does
Z positive
work

)

v
(a) (B)
(c) What is the net work W done on the cab during the fall?

Calculation: The net work is the sum of the works done by
the forces acting on the cab:

W=W,+ W;=583X 1047 — 470 X 10*]
=118 X 10*J = 12 kl. (Answer)

(d) What is the cab’s kinetic energy at the end of the 12 m
fall?

Calculation: From Eq.7-1, we can wr ite the kinetic energy

at the start of the fall as K; = ,,mlf . We can then write Eq.
7-11a

K=K+ W= ,,mlf! + W
= 3(5[]0 kg)(4.0 m/s)> + 1.18 X 104]

= 1.58 X 10*J =~ 16 kJ. (Answer)



7.7 Work Done by a Spring Force

Hooke’s Law: To a good approximation for many springs, the force from a spring is
proportional to the displacement of the free end from its position when the spring is in the
relaxed state. The spring force is given by

F =—kx

S

The minus sign indicates that the direction of the spring force is always opposite the direction
of the displacement of the spring’s free end. The constant K is called the spring constant (or
force constant) and is a measure of the stiffness of the spring.

The net work W, done by a spring, when it has a distortion from x; to x;, is:

mzflﬂn.

I_.r Xy
ngf —kxdxz—kf x dx
. . ‘ W, = %kx}’* — %kx} (work by a spring force).
= (SR = (3 (3 — ).
Work W, is positive if the block ends up closer to the relaxed position (x =0) than it was

initially. It is negative if the block ends up farther away from x =0. It is zero if the block ends
up at the same distance from x= 0.



Sample Problem: Work done by spring

In Fig. 7-10, a cumin canister of mass m = 0.40 kg slides
across a horizontal frictionless counter with speed v = 0.50
m/s. It then runs into and compresses a spring of spring con-
stant kK = 750 N/m. When the canister is momentarily
stopped by the spring, by what distance d is the spring
compressed?

The spring force does
negative work, decreasing
speed and kinetic energy.

—

vq_

/— Frictionless

—d —

Stop First touch

Fig. 7-10 A canister of mass m moves at velocity vV toward a
spring that has spring constant k.

Calculations: Putting the first two of these ideas together,
we write the work —kinetic energy theorem for the canister
as

K;— K;=—3kd>
Substituting according to the third key idea gives us this
expression

0—gmv? = —1kd>

Simplifying, solving for d, and substituting known data then

give us
m 0.40 kg
d=v,|— = (050m/s) | =———
"V = O\ T80 Nm

=12%X102m=12cm. (Answer)



7.8 Work Done by a General Variable Force
A. One-dimensional force, graphical analysis:

*We can divide the area under the curve of F(x)
into a number of narrow strips of width x.

*We choose x small enough to permit us to take We can approximate

the force F(X) as being reasonably constant over Work is equal to the that area with the area
that interval. area under the curve. of these strips.
Fx) Fx)
"We let F; ., be the average value of F(x) within | AW~ |
the jth interval. | X |
! i I ‘n}i avg i
. . . | |
*The work done by the force in the jth interval | L | |
- - 0 % 7 0 % - R X
IS approximately ! A :
(a) ()
| AW, =F,  AX

Javg

>W =Y AW, =YF, Ax

*W; is then equal to the area of the jth
rectangular, shaded strip.



7.8 Work Done by a General Variable Force

A. One-dimensional force, calculus analysis:

We can make the approximation

better by reducing the strip width _ For the best, take the
. . . We can do better with limit of strip widths

Ax and using more strips (Fig. ). In more, narrower sirips. going to zero.

the limit, the strip width approaches “” -

zero, the number of strips then
becomes infinitely large and we

HE———————

-

have, as an exact result, 0

0

4
“T

(c) (d)

AW =lim Y F, Ax=["F(x)dx

AX—0 J.avg



7.8: Work Done by a General Variable Force

B. Three dimensional force:

If F = Fi+ F,j + Fk,

where F, is the x-components of F and so on,

and d7 = dxi + dy] + dzk.

where dx is the x-component of the displacement vector dr and so on,

then dW = F-d¥ = Edx + Edy + Edz.

- Ty Xy Yr Zy
Finally, W= | dW=| Fadx+ | Fdy+ | Fdz
F; X; ¥; £



7.8: Work Done by a General Variable Force

A particle of mass m is moving along an x axis and acted on
by a net force F(x) that is directed along that axis.

The work done on the particle by this force as the particle
moves from position x; to position X;Is :

W= J‘IF{I) dx = J"r ma dx,

X;

BUt, dv B dv  dx _ dv .

dt — dx drt dx

Vi vy
Therefore, W= f mv dv = m J‘ v dv

— Ll A



Sample Problem: Work calculated from graphical method:

In an epidural procedure, as used in childbirth, a surgeon or
an anesthetist must run a needle through the skin on the pa- 12
tient’s back, through various tissue layers and into a narrow
region called the epidural space that lies within the spinal
canal surrounding the spinal cord. The needle is intended to
deliver an anesthetic fluid. This tricky procedure requires
much practice so that the doctor knows when the needle has
reached the epidural space and not overshot it, a mistake
that could result in serious complications. A

The feel a doctor has for the needle’s penetration is the
variable force that must be applied to advance the needle
through the tissues. Figure 7-12a is a graph of the force mag-
nitude F versus displacement x of the needle tip in a typical
epidural procedure. (The line segments have been straight-
ened somewhat from the original data.) As x increases from
(), the skin resists the needle, but at x = 8.0 mm the force is
finally great enough to pierce the skin, and then the re-

Fig. 7-12 (a)
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Calculations: Because our graph consists of straight-line
segments, we can find the area by splitting the region below
the curve into rectangular and triangular regions, as shown

quired force decreases. Similarly, the needle finally pierces
the interspinous ligament at x = 18 mm and the relatively
tough ligamentum flavum at x = 30 mm. The needle then
enters the epidural space (where it is to deliver the anes-
thetic fluid), and the force drops sharply. A new doctor must
learn this pattern of force versus displacement to recognize
when to stop pushing on the needle. (This is the pattern
to be programmed into a virtual-reality simulation of an
epidural procedure.) How much work W is done by the
force exerted on the needle to get the needle to the epidural
space at x = 30 mm?

For example, the area in triangular region A is
area 4 = 3(0.0080 m)(12N) = 0.048 N-m = 0.048 J.

Once we've calculated the areas for all the labeled regions
in Fig. 7-12b, we find that the total work is

W = (sum of the areas of regions A through K')
= 0.048 + 0.024 + 0.012 + 0.036 + 0.009 + 0.001
+ 0.016 + 0.048 + 0.016 + 0.004 + 0.024

= 0.238 J. (Answer)



Sample Problem: Work from 2-D integration:

Force F = (3x2N)i + (4 N)j. with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2m, 3m) to (3m, O0m)? Does the speed of the
particle increase, decrease, or remain the same?

Calculation: We set up two integrals, one along each axis:

3 0 3 0
WzJ‘ 3,r2d,r—|—J‘ 4dy=3J‘ ,rzd.r—l—ﬁlJ‘ dy
2 3 2 3

=3[R + 4yl = [3* — 23] + 4[0 - 3]
=T701. (Answer)

The positive result means that energy is transferred to the
particle by force F.Thus, the kinetic energy of the particle
increases and, because K = %mvz, its speed must also
increase. If the work had come out negative, the kinetic
energy and speed would have decreased.



7.9 Power

The time rate at which work is done by a force is said to be
the power due to the force. If a force does an amount of work
W in an amount of time t, the average power due to the force
during that time interval is

The instantaneous power P is the instantaneous time rate of
doing work, which we can write as

The Sl unit of power is the joule per second, or Watt (W).

In the British system, the unit of power is the footpound
per second. Often the horsepower Is used.




7.9 Power

p_ AW _ Fcosadx :me(%)ﬁ

dt dt
P = Fv cos ¢.

P=F-v (instantaneous power).



Sample Problem: Power, force, velocity:

Figure 7-14 shows constant forces F, and Fg acting on a box
as the box slides rightward across a fr 1ct|0n]ess floor. Force F1
is horizontal, with magnitude 2.0 N: force Fq is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

Negative power.
(This force is —
removing energy.)

|
g

— 60"
_— F
Frictionless ‘\ | Fig.7-14) _
— |

Positive power.
(This force is
supplying energy.)

v
>

Calculation: We use Eq. 7-47 for each force. For force Fl,
at angle ¢ = 180 to velocity ¥, we have
Py = Fiv cos ¢y = (2.0 N)(3.0 m/s) cos 180°
= —6.0 W. (Answer)

This negative result tells us that force F is transferring en-
ergy from the box at the rate of 6.0 J/s.
For force F,,at angle ¢, = 60° to velocity 7, we have
P> = Fyv cos ¢, = (4.0 N)(3.0 m/s) cos 60°
= 6.0 W. (Answer)

This positive result tells us that force is transferring
energy to the box at the rate of 6.0 J/s. The net power is
the sum of the individual powers:

Pnet= Pl + P2:-6.0 W +6.0 W= 0,

which means that the net rate of transfer of energy to

or from the box is zero. Thus, the Kinetic energy of the
box is not changing, and so the speed of the box will
remain at 3.0 m/s. Therefore both P, and P, are constant
and thus so is P,



