Chapter 7

Impulse and Momentum



7.1 The Impulse-Momentum Theorem
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7.1 The Impulse-Momentum Theorem

DEFINITION OF IMPULSE

The impulse of a force Is the product of the average
force and the time interval during which the force acts:

—

J = FAt

Impulse is a vector quantity and has the same direction
as the average force.
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7.1 The Impulse-Momentum Theorem

DEFINITION OF LINEAR MOMENTUM

The linear momentum of an object is the product
of the object’'s mass times its velocity:

>

D=mv

Linear momentum is a vector quantity and has the same
direction as the velocity.

Kilogram - meter/second (kg - m/s)



7.1 The Impulse-Momentum Theorem
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7.1 The Impulse-Momentum Theorem

IMPULSE-MOMENTUM THEOREM

When a net force acts on an object, the impulse of
this force is equal to the change in the momentum

of the object

) mv —mv
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7.1 The Impulse-Momentum Theorem

Example 2 A Rain Storm

Rain comes down with a velocity of -15 m/s and hits the
roof of a car. The mass of rain per second that strikes

the roof of the car is 0.060 kg/s. Assuming that rain comes
to rest upon striking the car, find the average force

exerted by the rain on the roof.
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7.1 The Impulse-Momentum Theorem

Rainodrop
Negle_ctlng the weight of Vo Ge= 0 m/s
the raindrops, the net force /

on a raindrop is simply the
force on the raindrop due to
the roof.

FAt = mv, —-mv, ——> E= _( m

F=—(0.060kg/s)—15m/s)=-+0.90 N



7.1 The Impulse-Momentum Theorem

Conceptual Example 3 Hailstones Versus Raindrops

Instead of rain, suppose hail is falling. Unlike rain, hail usually
bounces off the roof of the car.

If hail fell instead of rain, would the force be smaller than,
equal to, or greater than that calculated in Example 2?

Hailstone




7.2 The Principle of Conservation of Linear Momentum

WORK-ENERGY THEOREM <~ CONSERVATION OF ENERGY

IMPULSE-MOMENTUM THEOREM <>?77?

Apply the impulse-momentum theorem to the midair collision
between two objects.....



7.2 The Principle of Conservation of Linear Momentum

Internal forces — Forces that objects within
the system exert on each other.

External forces — Forces exerted on objects
by agents external to the system.
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(b) During collision

(¢) After collision



7.2 The Principle of Conservation of Linear Momentum

(Z IE)At =MV, —mv,
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7.2 The Principle of Conservation of Linear Momentum



7.2 The Principle of Conservation of Linear Momentum

The internal forces cancel out. Q\* ;

(Vo + VA, Jat = P, — P,
(sum of average external forces )At = P, —P, o

(¢) After collision



7.2 The Principle of Conservation of Linear Momentum

—_

(sum of average external forces)At = P, —P,

If the sum of the external forces is zero, then

0=P,-P, == P, =P,

PRINCIPLE OF CONSERVATION OF LINEAR MOMENTUM

The total linear momentum of an isolated system is constant
(conserved). An isolated system is one for which the sum of
the average external forces acting on the system is zero.



7.2 The Principle of Conservation of Linear Momentum

Conceptual Example 4 Is the Total Momentum Conserved?

Imagine two balls colliding on a billiard

table that is friction-free. Use the momentum
conservation principle in answering the
following questions. (a) Is the total momentum
of the two-ball system the same before

and after the collision? (b) Answer

part (a) for a system that contains only

one of the two colliding

balls.




7.2 The Principle of Conservation of Linear Momentum

PRINCIPLE OF CONSERVATION OF LINEAR MOMENTUM

The total linear momentum of an isolated system is constant
(conserved). An isolated system is one for which the sum of
the average external forces acting on the system is zero.

In the top picture the net external force on the
system is zero.

In the bottom picture the net external force on the
system is not zero.




7.2 The Principle of Conservation of Linear Momentum

Example 6 Ice Skaters

Starting from rest, two skaters
push off against each other on

iIce where friction is negligible. iy
my W '&1 my
‘ N =k
One is a 54-kg woman and = 'm
one is a 88-kg man. The woman (@) Before
moves away with a speed of - _ o

+2.5 m/s. Find the recoll velocity
of the man.

(b) After



7.2 The Principle of Conservation of Linear Momentum
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(54 kg )+2.5m/s)

Vi, =—

1.5m/s

88 kg

(b) After



7.2 The Principle of Conservation of Linear Momentum

Applying the Principle of Conservation of Linear Momentum
1. Decide which objects are included in the system.

2. Relative to the system, identify the internal and external forces.
3. Verify that the system is isolated.

4. Set the final momentum of the system equal to its initial momentum.
Remember that momentum is a vector.



7.3 Collisions in One Dimension

The total linear momentum is conserved when two objects
collide, provided they constitute an isolated system.
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(a) Elastic collision

Elastic collision -- One in which the total kinetic
energy of the system after the collision is equal to
the total kinetic energy before the collision. ‘ )\K

i

Inelastic collision -- One in which the total kinetic

I —

energy of the system after the collision is not equal
to the total kinetic energy before the collision; if the
objects stick together after colliding, the collision is
said to be completely inelastic.

(b) Inelastic collision
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(¢) Completely inelastic collision



7.3 Collisions in One Dimension

Example 8 A Ballistic Pendulim

The mass of the block of wood
Is 2.50-kg and the mass of the
bullet is 0.0100-kg. The block
swings to a maximum height of
0.650 m above the initial position.

Find the initial speed of the (6) I =
bullet. \

hi=0.650 m
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7.3 Collisions in One Dimension

Apply conservation of momentum
to the collision: (a) cp—

mVe, +MVe, =MV, +m,v,,
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7.3 Collisions in One Dimension

Applying conservation of energy
to the swinging motion:

mgh =1 mv*
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7.3 Collisions in One Dimension
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ol

2(9.80 m/s2)0. _
0.0100 kg j\/ (9 80m/s XO 650 m) = +896m/s



7.4 Collisions in Two Dimensions
A Collision in Two Dimensions

vl = 0.900 m/s

my = 0.150 kg FEd
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voo = 0.540 m/s »_j35 0° i vfp= 0.63 m/s

my = 0.260 kg

Ugp = 0.700 m/s



7.4 Collisions in Two Dimensions

MV + MV, =MV

0

1x T MV

02X

mlvfly + mZVf 2y — mlvoly + m2V02y
vp1 = 0.200 m/s
my = 0.150 kg T
|
|
\50 0° : i G- +‘y
< s \
————————————————— | il
e WY, L, vm=olzms A -5 |
vgo = 0.540 m/s ]35 0° vg= 0.63 m/s

\
\
my = 0.260 kg i



7.5 Center of Mass

The center of mass is a point that represents the average location for
the total mass of a system.
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7.5 Center of Mass
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7.5 Center of Mass

_ My, +myv,
cm
m, +m,

In an isolated system, the total linear momentum does not change,
therefore the velocity of the center of mass does not change.



7.5 Center of Mass
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v = (88 kg)-1.5m/s)+(54 kg)+2.5m/s) _ 0,002 <0
88 kg +54 kg




