Chapter 9

Center of Mass
and
Linear Momentum
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9.2 The Center of Mass

The center of mass of a
system of particles is the
point that moves as
though (1) all of the
system’s mass were
concentrated there and
(2) all external forces
were applied there.

o / SN
e o
f \
[ &3
-_—_"_’ — o ::—_—_-_.______
! L W ]
/” {'2;} N
&
. .
."Il."ll "II'

The center of mass (black
dot) of a baseball bat
flipped into the air follows a
parabolic path, but all other
points of the bat follow
more complicated curved
paths.



9.2 The Center of Mass: A System of Particles

Consider a situation in which n particles are strung out along
the x axis. Let the mass of the particles are m;, m,, ....m,, and
let them be located at x,, X,, ...x, respectively. Then if the
total mass is M = m;+ m, + ...+ m,, then the location of the
center of mass, X, IS

com?

Myxy + mMyXy + Myxy + -« + m,x,

Xeom =
M

1 n
= ﬂ g m;x;.



9.2 The Center of Mass: A System of Particles

In 3-D, the locations of the center of mass are given by:

The position of the center of mass can be expressed as:

—

rDDl’I'l - 'YDDI'I'II + .H-:DI'IIJ + z{.‘:l.'_'ll'l'lk"

Fcum T



9.2 The Center of Mass: Solid Body

In the case of a solid body, the “particles” become
differential mass elements dm, the sums become integrals,
and the coordinates of the center of mass are defined as

1 1 1
xmm:EIde* ymm:ﬂfydma me:ﬂjzdm

where M is the mass of the object.

dm M
v

It the object has uniform density, r, defined as: p =—v-=

1 1 1
[hen _——f % _——f V _——f V
Xcom V xdV, VYeom V y dV, {com v zdV.

Where V is the volume of the object.



Sample problem, COM

Figure 9-3a shows a uniform metal plate P of radius 2R from
which a disk of radius R has been stamped out (removed) in
an assembly line. The disk is shown in Fig. 9-3b. Using the xy
coordinate system shown, locate the center of mass comp of
the remaining plate.

7 Fig. 9-3

2R
R
x

2

Calculations: First, put the stamped-out disk (call it
disk S) back into place to form the original composite
plate (call it plate C). Because of its circular symmetry,
the center of mass comg for disk S is at the center of S,
at X =-R. Similarly, the center of mass com for
composite plate C is at the center of C, at the origin.
Assume that mass mS of disk S is concentrated in a
particle at xs =-R, and mass m, is concentrated in a
particle at x,. Next treat these two particles as a two
particle system, and find their center of mass Xq,p.

MmgXg + MpXxp

X =
Str mg + mp
Next note that the combination of disk S and plate P is
composite plate C. Thus, the position Xg,p 0f comg,p
must coincide with the position X of com., which is at
the origin; so Xg,p =X = 0.

Mg
Xp = —Xg 5
mMp
But, mg  densityg thicknessg areag

Mp densityp thicknessp areap

mg  areag areag and x.=-R
— — S_
mp  areap  area, — areag
_ 1

m2R? — wR* 3



Sample problem, COM of 3 particles The total mass M of the system is 7.1 kg.

Three pEll"[iClES of masses my = 1.2 kg m, = 2.5 l{g and The coordinates of the center of mass are
ms = 3.4 kg form an equilateral triangle of edge length  therefore:

a = 140 cm. Where is the center of mass of this system?

b)

This is the position . = L i s — mix; + myx, + myx;
0 vector Taom for the Tem M AT M
& com (it points from (1.2 kg)(0) + (2.5 kg)(140 cm) + (3.4 kg)(70 cm)
the origin to the com). = .
100 7.1 kg
= 83 cm (Answer)
‘‘‘‘‘‘‘‘ 1 2 myy; + my v, + myy
;’0 and Veom = ﬂz‘] my; = —=— ;4 2 2
o my _ (L.2Kkg)(0) + (2.5kg)(0) + (3.4 kg)(120 cm)
0~ 50 “om 100 150 B 7.1 kg

] ] = 58 cm. (Answer)
We are given the following data:

Note that the z_,, = 0.

Particle Mass (kg) x (cm) v (cm)
1 1.2 0 0
2 2.5 140
3 34 70 120




9.3: Newton’s 2"9 Law for a System of Particles

The vector equation that governs the motion of the center
of mass of such a system of particles is:

FI]Et — Mﬁcom (SYSIE[’TI of PEll‘tiCleS). ‘ F“e‘--" - M.ﬁ‘com.x Fllt?t.y = Macom.y Fnel.z - Macom.z'
Note that: The internal forces of the

1. F.; Is the net force of all external explosion cannot change

forces that act on the system. Forces the path of the com.

on one part of the system from
another part of the system (internal
forces) are not included

2. M is the total mass of the system.
M remains constant, and the system

\

Is said to be closed.
Fig. 9-5 A fireworks rocket explodesin

3. a4 IS the acceleration of the flight. In the absence of air drag, the center

of mass of the fragments would continue to
center of mass of the system. follow the original parabolic path, until

fragments began to hit the ground.



9.3: Newton’s 2"9 Law for a System of Particles: Proof of final result

—=

> For a system of n particles, M7Teom = My + mor; + msrs + -« - + m,r,,

where M is the total mass, and r; are the position vectors of the masses m..

»Differentiating, MV, = mv; + myvy + mavz + - - - + m,v,.

where the v vectors are velocity vectors.

> This leads to Maom = ma, + mya, + msay + - -+ + m,a,.
>Finally, Mawn=F+FK+F+---+F,

What remains on the right hand side is the vector sum of all the external forces that
act on the system, while the internal forces cancel out by Newton’s 3" Law.



Sample problem: motion of the com of 3 particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F; = 6.0N, F, = 12 N, and F; = 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

¥
Fig. 9-7 7 =
() 3 ]
4.0kg o
2 o S I |
come 8.0 kg
0 X
-3 -2 -1 1 2 B 4 5
=i
4.0 kg
-2 Q —
The com of the system 5 F
will move as if all the (a)
mass were there and y
the net force acted there. 7 —
2 Fﬂf‘l
3
M=16kg
* 7 a
f: 1 0 Ori
com FB
0 X
-3 -2 -1 1 2 3 4 5

Calculations: Applying Newton’s second law
to the center of mass,

—

Foet = Md o
ﬁ+ﬁ2+ﬁ%:Mﬁc01n

. _FR+FE+F
a = :
com M
Fi.+ FE +F,
'.I' =
( com, x M
—6.0N + (12N) cos 45° + 14 N
- (12 ) cos = 1.03 m/s2,
16 kg
Along the y axis, we have
Ryt E +F
acom.y o M
0+ (12N)sin45° + 0

= 16 kg = (0.530 m/s2.

From these components, we find that @, has the magnitude

nCDI’ll = ’\/{:HCOII].I)Z + (”COI’Il.y)z
= 1.16 m/s? = 1.2 m/s? (Answer)
and the angle (from the positive direction of the x axis)

Aeom, y

6 = tan!

= 27°. (Answer)

GCOITI, x



9.4: Linear Momentum

DEFINITION:

—

p = mv (linear momentum of a particle)

In which m is the mass of the particle and v is its velocity.

The time rate of change of the momentum of a particle is equal to
the net force acting on the particle and is in the direction of that

force.

g o_ dp
net df'
Manipulating this equation:
. dp d , _ v ,
Foa = - =-—(mV)=m——=ma.  (Newton’s 2" Law)

dt dt dt



9.5: The Linear Momentum of a System of Particles

The linear momentum of a system of
particles is equal to the product of the
total mass M of the system and the
velocity of the center of mass.

P=MVv_,, (linear momentum, system of particles),

!

(system of particles),

. dP
F...=—
net df



9.6: Collision and Impulse

>

4' -. [ ,A‘,

Fig. 9-8 Force f(t) acts on a ball
as the ball and a bat collide.

In this case, the collision is brief, and the ball
experiences a force that is great enough to slow,
stop, or even reverse its motion.

The figure depicts the collision at one instant.
. The ball experiences a force F(t) that varies
The collision of a ball with a bat collapses

partiof tie ball (Photo by Harald during the collision and changes the linear

Edgerton. ©The Harold and Esther momentum of the ball.
Edgerton Family Trust, courtesy of Palm
Press, Inc.)




9.6: Collision and Impulse

The change in linear momentum is related to the force by
Newton’s second law written in the form

F = dpld.

fy -
— j dﬁ':J F(t) dt.

I t;

— I-'F —
— J = f F(t) dt (impulse defined).
L

The right side of the equation is a measure of both the magnitude and
the duration of the collision force, and is called the impulse of the
collision, J.



9.6: Collision and Impulse

The impulse in the collision
is equal to the area under

the curve.
F
Ie)

J
| !
t; I
| At |

(a)

F The average force gives
the same area under the
curve.

"ff;\.'g
J
| !
L I
| At |
(b)

Fig. 9-9 (a) The curve shows the magni-
tude of the time-varying force F() that acts
on the ball in the collision of Fig. 9-8. The
area under the curve is equal to the magni-
tude of the impulse J on the ball in the colli-
sion. (b) The height of the rectangle repre-
sents the average force F,,, acting on the ball
over the time interval At. The area within the
rectangle is equal to the area under the curve
in (a) and thus 1s also equal to the magnitude
of the impulse J in the collision.

Instead of the ball, one can focus on the
bat. At any instant, Newton’s third law
says that the force on the bat has the same
magnitude but the opposite direction as the
force on the ball.

That means that the impulse on the bat has
the same magnitude but the opposite
direction as the impulse on the ball.



9.6: Collision and Impulse: Series of Collisions

Let n be the number of projectiles that collide in a

v time interval At.
0000000 Taget —~x o o
Projectiles Each projectile has initial momentum mv and
n| b undergoes a change Ap in linear momentum

because of the collision.
Fig. 9-10 A steady stream of projectiles,
with ‘de“ttf‘llll““?" ‘;ll‘?“lel“ta~ %‘%“‘des with  The total change in linear momentum for n
?télg?‘w lcthlst *e t‘f‘ IE qff . eh?‘e‘jge projectiles during interval At is nAp. The
OTCE Favg ON THE tAfget1s to the right an resulting impulse on the target during At is along
has a magnitude that depends on the rate at :
the x axis and has the same

which the projectiles collide with the target _ . .
or, equivalently, the rate at which mass col- magnitude of nAp but is in the opposite direction.

lides with the target. J=—nAp
J n n
F,,=—=——Ap =——mAv.
At Ar P A

In time interval At, an amount of mass Am =nm
collides with the target.

B Am
e Ay

F, Av.




Race car—wall collision. Figure 9-11a is an overhead view of
Sample prObIem 2- D the path taken by a race car driver as his car collides with the
racetrack wall. Just before the collision, he is traveling at
impulse speed v; = 70 m/s along a straight line at 30° from the wall.
Just after the collision, he is traveling at speed vy= 50 m/s
along a straight line at 10” from the wall. His mass s is 80 kg.

Fig. 9-11 -
9 The collision The impulse on the car
¥ changes the Y is equal to the change
Wall momentum. F in the momentum.
—x . Y I"' T — X
30° Path Ll o
10° pf 10° l —105
|
=
T 4,
(a) (b) (c)
(a) What is the impulse J on the driver due to the collision? Impulse: The i lse is th
Calculations: Figure 9-11b shows the driver’s momentum p; P - e ITPU e . - .
before the collision (at angle 30° from the positive x direc- J = (—910i — 3500j) kg-m/s, (Answer)
tlon) and his momentum pafter the collision (at angle —10%). hich means the 1mpulse magnitude is
J = Py— Pi= mvy— j"”'" = mVy — V). J=NJ§+J§=3616k2-m/5~3600kg-m/5*
x component: Along the x axis we have _ ] - B
The angle of J is given by
Jx = fn{fo — Vix) N ° Jg
) 6 = tan~! —, (Answer)
= (80 kg)[(50 m/s) cos(—107) — (70 m/s) cos 30°] J

= —910 kg - m/s. which a calculator evaluates as 75.4°. Recall that the physi-

| cally correct result of an inverse tangent might be the

displayed answer plus 180°. We can tell which is correct here

J,=m(vg —v;) by drawing the components of 7 (Fig. 9-11¢). We find that ¢
— (80 kg)[(50 m/s) sin(—10°) — (70 m/s) sin 30°] is actually 75.4° + 180° = 255.4°, which we can write as

= —3495 kg-m/s = —3500 kg - m/s. f= Ll (Answer)

y component: Along the y axis,



Race car—wall collision. Figure 9-11a is an overhead view of

Sample prObIem 2- D the path taken by a race car driver as his car collides with the
Impulse, cont.

Fig. 9-11

Wall

racetrack wall. Just before the collision, he is traveling at
speed v; = 70 m/s along a straight line at 30° from the wall.
Just after the collision, he is traveling at speed vy,= 50 m/s
along a straight line at 10” from the wall. His mass s is 80 kg.

The collision
changes the y
momentum.

The impulse on the car
Y is equal to the change
in the momentum.

30°

, b —x = : —x
Path = /1050

(a)

|
|
10° Py 10° l
|
|

J _!J},

(B) (c)
(b) The collision lasts for 14 ms. What is the magnitude of

the average force on the driver during the collision?
Calculations: We have

_J _ 36l6kg-m/s
At 0.014 s
= 2583 X 10° N = 2.6 X 10° N. (Answer)

F,

Using F' = ma with m = 80 kg, you can show that the magni-
tude of the driver’s average acceleration during the collision
is about 3.22 X 103 m/s? = 329¢g, which is fatal.

Surviving: Mechanical engineers attempt to reduce the
chances of a fatality by designing and building racetrack
walls with more “give.” so that a collision lasts longer. For
example, if the collision here lasted 10 times longer and the
other data remained the same, the magnitudes of the aver-
age force and average acceleration would be 10 times less
and probably survivable.



9.7: Conservation of Linear Momentum

If no net external force acts on a system of
particles, the total linear momentum, P, of the
system cannot change.

—

P = constant (closed, isolated system).

If the component of the net external force on a closed
system is zero along an axis, then the component of the
linear momentum of the system along that axis cannot
change.



Sample problem: 1-D explosion

One-dimensional explosion: Figure 9-12a shows a space hauler
and cargo module, of total mass M, traveling along an x axis in
deep space. They have an initial velocity v; of magnitude 2100
km/h relative to the Sun. With a small explosion, the hauler
ejects the cargo module, of mass 0.20M (Fig. 9-12b). The hauler
then travels 500 km/h faster than the module along the x axis;
that is, the relative speed v, between the hauler and the mod-
ule is 500 km/h. What then is the velocity Vs of the hauler rela-
tive to the Sun?

KEY IDEA

Because the hauler—module system is closed and isolated,
its total linear momentum is conserved; that is,

Fig. 9-12 P, =P, (9-44)

The explosive separation
can change the momentum
of the parts but not the
momentum of the system.

A _—= = Vi VMS — VHS
—_— —_—
\ Hauler
Tormoei: 0.20M 0.80M
X X

(a) (b)

where the subscripts i and f refer to values before and after
the ejection, respectively.

Calculations: Because the motion is along a single axis, we
can write momenta and velocities in terms of their x compo-
nents, using a sign to indicate direction. Before the ejection,
we have

P; = Mv,. (9-45)
Let vy be the velocity of the ejected module relative to the
Sun. The total linear momentum of the system after the ejec-
tion is then

Py = (0.20M)vys + (0.80M)vys, (9-46)

where the first term on the right is the linear momentum of the
module and the second term is that of the hauler.

We do not know the velocity vy of the module relative
to the Sun, but we can relate it to the known velocities with

velocity of velocity of velocity of
hauler relative | = | hauler relative | T | module relative |.
to Sun to module to Sun

In symbols, this gives us
Vs = Vil T Vs (9-47)
or Vs = Vs — Vel

Substituting this expression for v, into Eq. 9-46, and then
substituting Egs. 9-45 and 9-46 into Eq. 9-44, we find

Mv; = 020M(vys — Vi) + 0.80Mv s,
which gives us
vys = v; + 0.20v,,.
or vys = 2100 km/h + (0.20)(500 km/h)
= 2200 km/h. (Answer)



Sample problem: 2-D explosion

Two-dimensional explosion: A firecracker placed inside a
coconut of mass M, initially at rest on a frictionless floor,
blows the coconut into three pieces that slide across the floor.
An overhead view is shown in Fig. 9-13a. Piece C, with mass
0.30M, has final speed vy = 5.0 m/s.

The explosive separation

can change the momentum

of the parts but not the

momentum of the system. y

Fig. 9-13

(a) (&)

(a) What is the speed of piece B, with mass 0.20M?
Calculations: To get started, we superimpose an xy coordi-
nate system as shown in Fig. 9-13b. with the negative direction
of the x axis coinciding with the direction of V4. The x axis is at
80° with the direction of v, and 50 with the direction of V.

Piy = Pf}”
where subscript i refers to the initial value (before the explo-
sion), and subscript y refers to the y component of P; or P;.

The component P;, of the initial lincar momentum is
zero, because the coconut is initially at rest. To get an ex-
pression for Py, we find the y component of the final linear
momentum of each piece, using the y-component version of
Eq.9-22 (p, = mv)):

Pray =0,

Py = _0.20MVf3)y = —OZOvaB sin S0°,

pf‘C,) = O.SOMVfCJ = O.SOMVfC sin 80°.
(Note that pg, =0 because of our choice of axes.)
Equation 9-48 can now be written as

Py = Py, = ppay + Pmy + Prcy-
Then, with vee = 5.0 m/s, we have

0=0—0.20Mvsin 50° + (0.30M)(5.0 m/s) sin 80°,
from which we find

veg = 9.64 m/s = 9.6 m/s. (Answer)

(b) What is the speed of piece A?
Prax = _O.SOMVfA.

Pig. = 020Mvg, = 0.20Mvg cos 50°,
Prex = 0.30Mvsc, = 0.30Mv;c cos 80°.
P, = Pfx = Piax t P+ Prox
Then, with v = 5.0 m/s and v = 9.64 m/s, we have
0= —0.50Mv;, + 0.20M(9.64 m/s) cos 50°
+ 0.30M (5.0 m/s) cos 807,
from which we find

Ve, = 3.0 m/s. (Answer)



9.8: Momentum and Kinetic Energy in Collisions

In a closed and isolated system, if there are two colliding bodies, and
the total kinetic energy is unchanged by the collision, then the
Kinetic energy of the system is conserved (it is the same before and
after the collision). Such a collision is called an elastic collision.

If during the collision, some energy is always transferred from
Kinetic energy to other forms of energy, such as thermal energy or
energy of sound, then the kinetic energy of the system is not
conserved. Such a collision is called an inelastic collision.




9.9: Inelastic collisions in One Dimension . .
In a completely inelastic

collision, the bodies

Here is the generic setup SLEC RS

for an inelastic collision. .
Before = Vo, =0
Body 1 Body 2 Q Q x
Vi Vo My my
Before I:l ' t‘h Projectile  Target
Q O X v
b "2 After —>
Q00—
- — my + my
Vif Vof : :
After —— —d Fig. 9-15 A completely inelastic
Q 9 X collision between two bodies. Before the
collision, the body with mass m, 1s at rest
Fig. 9-14 Bodies 1 and 2 move along an and the body with mass m; moves directly
x axis, before and after they have an inelas- toward it. After the collision, the stuck-
tic collision. together bodies move with the same
velocity V.
myvy; + mMovy; = myvie + Mmooy myvy; = (my + my)V
My
V - Ve

ny + ms



9.9: Inelastic collisions in 1-D: Velocity of Center of Mass

The com of the two . . .
bodies is between 3 = P _ Pu Tt po
them and moves at a com my + m, m, + m, '

constant velocity.

Here is the

: . o Here is the
incoming projectile.

stationary target.

Fig. 9-16 Some freeze frames

of a two-body system, which
Collision! %—o undergoes a completely inelastic
ml + mz
o

collision. The system’s center of

mass is shown in each freeze-
The com moves at the a )
same velocity even after 1 \ Ty frame. The velocity v, of the
the bodies stick together. @-B* center of mass is unaffected by the
72 collision.
> Because the bodies stick together

after the collision, their common
velocity V must be equal to v,



Sample problem: conservation of
momentum

The ballistic pendulum was used to measure the speeds of
bullets before electronic timing devices were developed. The
version shown in Fig. 9-17 consists of a large block of wood of
mass M = 5.4 kg, hanging from two long cords. A bullet of
mass /m = 9.5 g is fired into the block, coming quickly to rest.
The block + bullet then swing upward, their center of mass
rising a vertical distance s = 6.3 cm before the pendulum
comes momentarily to rest at the end of its arc. What is the
speed of the bullet just prior to the collision?

There are two events here.

The bullet collides with the

block. Then the bullet—block

system swings upward by

height h.

m

=V

Th

Fig. 9-17 A ballistic pendulum, used to measure the speeds of
bullets.

The collision within the bullet— block system is so

brief. Therefore:

(1) During the collision, the gravitational force on
the block and the force on the block from the
cords are still balanced. Thus, during the
collision, the net external impulse on the
bullet-block system is zero. Therefore, the
system is isolated and its total linear
momentum is conserved.

(2) The collision is one-dimensional in the sense
that the direction of the bullet and block just
after the collision is in the bullet’s original
direction of motion. m

V=—"—v
m+ M

As the bullet and block now swing up

together, the mechanical energy of the bullet—

block—Earth system is conserved:

%{m + M)V?2 = (m + M)gh.

Combining steps: m +

v = —M \ 2gh
1

I

B (ﬂ.ﬂﬂgs kg + 5.4 kg
B 0.0095 kg

“

) V/(2)(9.8 m/s2)(0.063 m)

= 630 m/s. (Answer)



9.10: Elastic collisions in One Dimension

Here is the generic setup
for an elastic collision with
a stationary target.

R In an elastic collision, the kinetic
Q Q— x -
o T energy of each colliding body
3 ) may change, but the total kinetic
Ater o o g energy of the system does not
e change.

Fig. 9-18 Body 1 moves along an x axis
before having an elastic collision with body
2.which is initially at rest. Both bodies
move along that axis after the collision.



9.10: Elastic collisions in One EE——— —
. ) _ . ere is the generic setup
Dimension: Statlonary Target for an elastic collision with

a stationary target.

Before Vi
—_—D V=0
—o—— o :
-
MqyVy: = MV + MsY linear momentum). m my
1V1i WVir 2Vor ( ) Projertile Target
V) v
1 V2 1 ) n 1 2 ] ] After if ;f
MV = M Ve T 5MViy (kinetic energy). Q 1?:2 x
my

Fig. 9-18 Body 1 moves along an x axis
before having an elastic collision with body
2.which is initially at rest. Both bodies
move along that axis after the collision.




9.10: Elastic collisions in One
Dimension: Moving Target

Here is the generic setup
for an elastic collision with
a moving target.

—_— —

V1i Vi
Q Q—~
my Mo

Fig. 9-19 Two bodies headed for a one-

dimensional elastic collision.

H.TI'L’H + "‘”2";2:' = f”]V-lf-—}_ f'”zUZf-.

1 1 1 1
SV + 5myv3; = imlu%f + 5;1‘121:%};,

- ny — my _— 21, ’
If = i "2
e my A m, Y omy+my,
o 2my M my
Vor = Vii Vi

my + m, my + m,



Sample problem: Two pendulums

Two metal spheres, suspended by vertical cords, initially just
touch, as shown in Fig. 9-20. Sphere 1., with mass
my; = 30 g, is pulled to the left to height h; = 8.0 cm, and
then released from rest. After swinging down, it undergoes
an elastic collision with sphere 2, whose mass m, =75 g.
What is the velocity vy of sphere 1 just after the collision?

PR A AT A A P AT A A A AT

P T S ) LR G 3 EEE SR P Wi A FER P b e PR A
!

'

o'

¥ 9

ml Mg

4

Step 1. As sphere 1 swings down, the mechanical energy of
the sphere—Earth system is conserved. (The mechanical en-
ergy is not changed by the force of the cord on sphere 1 be-
cause that force is always directed perpendicular to the
sphere’s direction of travel.)

Calculation: Let's take the lowest level as our reference
level of zero gravitational potential energy. Then the kinetic
energy of sphere 1 at the lowest level must equal the gravi-
tational potential energy of the system when sphere 1 is at

height /. Thus,

1 2 =
M vy; = mighy,

which we solve for the speed vy; of sphere 1 just before the
collision:

vi; = V2ghy = \/(2)(9.8 mfsz)(D.OSO m)
= 1.252 m/s.

Step 2: Here we can make two assumptions in addition to
the assumption that the collision is elastic. First, we can as-
sume that the collision is one-dimensional because the motions
of the spheres are approximately horizontal from just before

the collision to just after it. Second, because the collision is so
fn] - fnz
Vii

VifFg =
. my; + m,

~0.030kg — 0.075 kg
0.030 kg + 0.075 kg

= —0.537 m/s = —0.54 m/s.

(1.252 m/s)

(Answer)

The minus sign tells us that sphere 1 moves to the left just
after the collision.



9.11: Collisions in Two Dimensions

— —

A glancing collision P+ B = Py + By

that conserves

both momentum and sz/j If elastic, K;; + Ky = Kis + Ky.
kinetic energy.
nyvy = fﬂllflf COS 61 + fnzlf'gf COS 62..
my| A6,
— \ | * 0 = —myvipsin 0 + myvyp sin 6.
1 2 _ 1 2 1 .2
Also, MV = 5 Vip T 39V5¢

Fig. 9-21 An elastic collision between
two bodies in which the collision is not
head-on. The body with mass m, (the tar-
get) is initially at rest.



9.12: Systems with Varying Mass: A Rocket

The ejection of mass from
the rocket's rear increases
the rocket's speed.

/— System boundary Va System boundary
M v —dM M+ dM v+ dv
u_b P
U
(a) x (&)

Fig. 9-22 (a) An accelerating rocket of mass M at time ¢, as seen from an inertial
reference frame. (b) The same but at time r + dt. The exhaust products released during
interval df are shown.

The system here consists of the rocket and the exhaust products released during interval dt.
The system is closed and isolated, so the linear momentum of the system must be conserved
during dt, where the subscripts i and f indicate the values at the beginning and end of time

interval dt.
P,=P. == Mv=—dMU+ (M+ dM)(v + dv)

velocity of rocket) [ velocity of rocket velocity of products
relative to frame /  \relative to products relative to frame

+dv) =v + U,
(v+dv) = vy — dMumleﬂ‘ —  Rv. = Ma

U=v+dv—vg.



9.12: Systems with Varying Mass: Finding the velocity

dM
dv = —vg—.
} Vel M
Vs My dM
dv = —v —,
J;é v Veel M, M

In which M; is the initial mass of the rocket and M its final mass.
Evaluating the integrals then gives

M,
1"f - L’é = vl’E| ln E——

M;

for the increase in the speed of the rocket during the change in
mass from M; to M .



Sample Problem: rocket engine, thrust, acceleration

A rocket whose initial mass M; is 850 kg consumes fuel at
the rate R = 2.3 kg/s. The speed v, of the exhaust gases rel-
ative to the rocket engine is 2800 m/s. What thrust does the
rocket engine provide?

KEY IDEA

Thrust 7T is equal to the product of the fuel consumption
rate R and the relative speed v, at which exhaust gases are
expelled, as given by Eq. 9-87.

Calculation: Here we find

T = Rv,, = (2.3 kg/s)(2800 m/s)

= 6440 N =~ 6400 N. (Answer)

(b) What is the initial acceleration of the rocket?

KEY IDEA

We can relate the thrust 7 of a rocket to the magnitude a of
the resulting acceleration with 7 = Ma, where M is the

rocket’s mass. However, M decreases and a increases as fuel
is consumed. Because we want the initial value of a here, we
must use the intial value M, of the mass.

Calculation: We find
y— T _ 6440 N
850 kg

I

= 7.6 m/s%.

(Answer)

To be launched from Earth’s surface, a rocket must have
an initial acceleration greater than g = 9.8 m/s?. That is, it
must be greater than the gravitational acceleration at the
surface. Put another way, the thrust T of the rocket engine
must exceed the initial gravitational force on the rocket,
which here has the magnitude M, g, which gives us

(850 kg)(9.8 m/s?) = 8330 N.

Because the acceleration or thrust requirement is not met
(here T = 6400 N), our rocket could not be launched from
Earth’s surface by itself; it would require another, more
powerful, rocket.



