
Chapter 10 

Rotation 



10.2 The Rotational Variables 

 

 

 
A rigid body is a body that can 

rotate with all its parts locked 

together and without any change 

in its shape. 

 

A fixed axis means that the 

rotation occurs about an axis that 

does not move. 

Figure skater Sasha Cohen in 

motion of pure rotation about a 

vertical axis. (Elsa/Getty Images, 

Inc.) 



10.2 The Rotational Variables 



10.2 The Rotational Variables: 

Angular Position 

Here s is the length of a circular arc 

that extends from the x axis (the 

zero angular position) to the 

reference line, and r is the radius of 

the circle. 

An angle defined in this way is 

measured in radians (rad). 



10.2 The Rotational Variables: 

Angular Displacement 

If a body rotates about 

the rotation axis as in, 

changing the angular 

position of the reference 

line from q1 to q2, the 

body undergoes an 

angular displacement Dq 

given by 

An angular displacement in the counterclockwise direction is 

positive, and one in the clockwise direction is negative. 



10.2 The Rotational Variables: 

Angular Velocity 

Suppose that our rotating 

body is at angular position q1 

at time t1 and at angular 

position q2 at time t2. Then the 

average angular velocity of 

the body in the time interval t 

from t1 to t2 to be. 

 

 

 

The instantaneous angular 

velocity w is the limit of the 

ratio as Dt approaches zero. 



10.2 The Rotational Variables: Angular Acceleration 

If the angular velocity of a rotating body is not constant, then 

the body has an angular acceleration.  

 

If w2 and w1 be its angular velocities at times t2 and t1, 

respectively, then the average angular acceleration of the 

rotating body in the interval from t1 to t2 is defined as 

 

 

 

The instantaneous angular acceleration a, is the limit of this 

quantity as Dt approaches zero. 

 

 

 

These relations hold for every particle of that body. The unit 

of angular acceleration is (rad/s2). 

 



Sample Problem 



Sample Problem 



Sample Problem 



Sample Problem,  

Angular Velocity and Acceleration 



10.3: Are Angular Quantities Vectors? 



10.4: Rotation with Constant Angular Acceleration 

Just as in the basic equations for constant linear acceleration, the basic 

equations  for constant angular acceleration can be derived in a similar 

manner. The constant angular acceleration equations are similar to the 

constant linear acceleration equations. 



Sample problem: Constant Angular Acceleration 

The angular acceleration is constant, so we can use the 

rotation equation:  

 

 

Substituting known values and setting q0 =0 and q =5.0 

rev =10p rad give us 

 

 

Solving this quadratic equation for t, we find t =32 s. 

(b) Describe the grindstone’s rotation between t =0 and 

t =32 s. 

 

Description: The wheel is initially rotating in the negative 

(clockwise) direction with angular velocity w0=4.6 rad/s, 

but its angular acceleration a is positive.  

 

The initial opposite signs of angular velocity and angular 

acceleration means that the wheel slows in its rotation in the 

negative direction, stops, and then reverses to rotate in the 

positive direction.  

 

After the reference line comes back through its initial 

orientation of q= 0, the wheel turns an additional 5.0 rev by 

time t =32 s. 

 

(c) At what time t does the grindstone momentarily stop? 

 

Calculation: With w =0, we solve for the corresponding time 

t.  

 

 



Sample problem: Constant Angular Acceleration 



10.5: Relating the Linear and Angular Variables 

If a reference line on a rigid body rotates through an angle q, a point within the 

body at a position r from the rotation axis moves a distance s along a circular arc, 

where s is given by: 

 

 

 

Differentiating the above equation with respect to time—with r held constant—

leads to 

 

 

 

The period of revolution T for the motion of each point and for the rigid body 

itself is given by  

 

Substituting for v we find also that 

 



10.5: Relating the Linear and Angular Variables 

Differentiating the velocity relation with respect to time—again with r held constant— 

leads to 

 

 

Here,  a =dw/dt. 

 

Note that dv/dt =at represents only the part of the linear acceleration that is responsible for 

changes in the magnitude v of the linear velocity. Like v, that part of the linear acceleration 

is tangent to the path of the point in question.  

 

Also, the radial part of the acceleration is the centripetal acceleration given by  

 

 



Sample problem 

Consider an induction roller coaster (which can be 

accelerated by magnetic forces even on a horizontal 

track). Each passenger is to leave the loading point 

with acceleration g along the horizontal track. 

That first section of track forms a circular arc (Fig. 

10-10), so that the passenger also experiences a 

centripetal acceleration. As the passenger accelerates 

along the arc, the magnitude of this centripetal 

acceleration increases alarmingly. When the 

magnitude a of the net acceleration reaches 4g at 

some point P and angle qP along the arc, the 

passenger moves in a straight line, along a tangent to 

the arc. 

(a) What angle qP should the arc subtend so that a is 

4g at point P? 

Calculations: 

 

Substituting wo=0, and qo=0, and we find: 

 

 

 

But  

 

which gives:  

 

This leads us to a total acceleration:  

 

 

Substituting for ar, and solving for q lead 

to: 

 

 

 

When a reaches the design value of 4g, 

angle q is the angle qP . Substituting a =4g, 

q= qP, and at= g, we find: 



Sample problem, cont.  

(b) What is the magnitude a of the passenger’s net 

acceleration at point P and after point P? 

 

Reasoning: At P, a has the design value of 4g. Just 

after P is reached, the passenger moves in a straight 

line and no longer has centripetal acceleration. 

 

Thus, the passenger has only the acceleration 

magnitude g along the track. 

 

Hence, a =4g at P and a =g after P. (Answer) 

 

Roller-coaster headache can occur when a 

passenger’s head undergoes an abrupt change in 

acceleration, with the acceleration magnitude large 

before or after the change. 

The reason is that the change can cause the brain to 

move relative to the skull, tearing the veins that 

bridge the brain and skull. Our design to increase the 

acceleration from g to 4g along the path to P might 

harm the passenger, but the abrupt change in 

acceleration as the passenger passes through point P 

is more likely to cause roller-coaster headache. 



10.6: Kinetic Energy of Rotation 

For an extended rotating rigid body, treat the body as a collection of particles with 

different speeds, and add up the kinetic energies of all the particles to find the total 

kinetic energy of the body: 

 

 

(mi is the mass of the ith particle and vi is its speed).  

      

     (w is the same for all particles). 

 

 

The quantity in parentheses on the right side is called the rotational inertia (or 

moment of inertia) I of the body with respect to the axis of rotation. It is a constant 

for a particular rigid body and a particular rotation axis. (That axis must always be 

specified.) 

 

Therefore,  

 

 

 

 



10.7: Calculating the Rotational Inertia 

If a rigid body consists of a great many adjacent particles (it is continuous, 

like a Frisbee), we consider an integral and define the rotational inertia of 

the body as 

 

 

 



10.7: Calculating the Rotational Inertia 

Parallel Axis Theorem:  

If h is a perpendicular distance between a given axis and the axis through the 

center of mass (these two axes being parallel).Then the rotational inertia I 

about the given axis is 

 

 
•Let O be the center of mass (and also the origin of the coordinate 

system) of the arbitrarily shaped body shown in cross section.  

•Consider an axis through O perpendicular to the plane of the 

figure, and another axis through point P parallel to the first axis.  

•Let the x and y coordinates of P be a and b. 

•Let dm be a mass element with the general coordinates x and y. 

The rotational inertia of the body about the axis through P is: 

 

 

 

 

 

•But x2 + y2 =R2, where R is the distance from O to dm, the first 

integral is simply Icom, the rotational inertia of the body about an 

axis through its center of mass.  

•The last term in is Mh2, where M is the body’s total mass. 



Sample problem: Rotational Inertia 



Sample problem: Rotational Inertia 



Sample problem: Rotational Inertia 



  

Sample problem: Rotational KE 



10.8: Torque 

The ability of a force F to rotate the body depends on both the magnitude of its tangential component 

Ft, and also on just how far from O, the pivot point, the force is applied.  

 

To include both these factors, a quantity called torque t is defined as: 

 

    OR, 

 

where  is called the moment arm of F.  
r



10.9: Newton’s Second Law for Rotation 

For more than one force, we can generalize: 



Sample problem: Newton’s 2nd Law  

in Rotational Motion 

Forces on block:  

From the block’s freebody, we can write Newton’s 

second law for components along a vertical y axis 

as:   T –mg= ma. 

The torque from the tension force, T, is -RT, negative 

because the torque rotates the disk clockwise from 

rest. 

The rotational inertia I of the disk is ½ MR2. 

But tnet =Ia =-RT=1/2 MR2a.  

Because the cord does not slip, the linear 

acceleration 

a of the block and the (tangential) linear 

acceleration at of the rim of the disk are equal.  

We now have: T=-1/2 Ma. 

Combining results: 

 

 

 

We then find T: 

 

 

 

The angular acceleration of the disk is: 

 

 

 

 

Note that the acceleration a of the falling block is 

less than g, and tension T in the cord (=6.0 N) is less 

than the gravitational force on the hanging block ( 

mg  =11.8 N). 



10.10: Work and Rotational Kinetic Energy 

where t is the torque doing the work W, and qi and qf are the body’s angular 

positions before and after the work is done, respectively. When t is constant, 

 

 

 

 

The rate at which the work is done is the power 
 

 



10.10: Work and Rotational Kinetic Energy 



Sample problem: Work, Rotational 

KE, Torque 


