
Chapter 11 

Fluids 



11.1 Mass Density 

DEFINITION OF MASS DENSITY 

 

The mass density of a substance is the mass of a  

substance divided by its volume: 

V

m


SI Unit of Mass Density:  kg/m3 



11.1 Mass Density 



11.1 Mass Density 

Example 1  Blood as a Fraction of Body Weight 

 

The body of a man whose weight is 690 N contains about 

5.2x10-3 m3 of blood. 

 

(a) Find the blood’s weight and (b) express it as a  

percentage of the body weight. 

   kg 5.5mkg1060m102.5 333  Vm



11.1 Mass Density 

   N 54sm80.9kg 5.5 2 mgW(a) 

 

 

 

 

(b) %8.7%100
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11.2  Pressure 

A

F
P 

SI Unit of Pressure:  1 N/m2 = 1Pa 

Pascal 



11.2  Pressure 

Example 2  The Force on a Swimmer 

 

Suppose the pressure acting on the back 

of a swimmer’s hand is 1.2x105 Pa.  The 

surface area of the back of the hand is  

8.4x10-3m2. 

 

(a)Determine the magnitude of the force 

that acts on it. 

(b) Discuss the direction of the force. 



11.2  Pressure 

A

F
P 

  
N 100.1

m104.8mN102.1

3

2325



 PAF

Since the water pushes perpendicularly  

against the back of the hand, the force 

is directed downward in the drawing. 



11.2  Pressure 

Atmospheric Pressure at Sea Level:   1.013x105 Pa = 1 atmosphere 



11.3 Pressure and Depth in a Static Fluid 

012  mgAPAPFy

mgAPAP  12

Vm 



11.3 Pressure and Depth in a Static Fluid 

VgAPAP  12

AhV 

AhgAPAP  12

hgPP  12



11.3 Pressure and Depth in a Static Fluid 

Conceptual Example 3  The Hoover Dam 

 

Lake Mead is the largest wholly artificial  

reservoir in the United States.  The water 

in the reservoir backs up behind the dam 

for a considerable distance (120 miles). 

 

Suppose that all the water in Lake Mead 

were removed except a relatively narrow 

vertical column. 

 

Would the Hoover Same still be needed 

to contain the water, or could a much less 

massive structure do the job? 



11.3 Pressure and Depth in a Static Fluid 

Example 4  The Swimming Hole 

 

Points A and B are located a distance of 5.50 m beneath the surface  

of the water.  Find the pressure at each of these two locations. 



11.3 Pressure and Depth in a Static Fluid 
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11.4 Pressure Gauges 
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11.4 Pressure Gauges 

AB PPP 2

ghPPA  1

ghPP atm 


pressure gauge

2

absolute pressure 



11.4 Pressure Gauges 



11.5 Pascal’s Principle 

PASCAL’S PRINCIPLE 

 

Any change in the pressure applied  

to a completely enclosed fluid is transmitted  

undiminished to all parts of the fluid and  

enclosing walls. 



11.5 Pascal’s Principle 
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11.5 Pascal’s Principle 

Example 7  A Car Lift 

 

The input piston has a radius of 0.0120 m 

and the output plunger has a radius of  

0.150 m. 

 

The combined weight of the car and the  

plunger is 20500 N.  Suppose that the input 

piston has a negligible weight and the bottom 

surfaces of the piston and plunger are at 

the same level.  What is the required input 

force? 



11.5 Pascal’s Principle 
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11.6 Archimedes’ Principle 

 APPAPAPFB 1212 

ghPP  12

ghAFB 

hAV 
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11.6 Archimedes’ Principle 

ARCHIMEDES’ PRINCIPLE 

 

Any fluid applies a buoyant force to an object that is partially 

or completely immersed in it; the magnitude of the buoyant 

force equals the weight of the fluid that the object displaces: 

 

fluid displaced
ofWeight 

fluid

forcebuoyant 
of Magnitude

WFB 



11.6 Archimedes’ Principle 

If the object is floating then the  

magnitude of the buoyant force 

is equal to the magnitude of its 

weight. 



11.6 Archimedes’ Principle 

Example 9  A Swimming Raft 

 

The raft is made of solid square 

pinewood.  Determine whether 

the raft floats in water and if 

so, how much of the raft is beneath 

the surface. 



11.6 Archimedes’ Principle 
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11.6 Archimedes’ Principle 
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The raft floats! 



11.6 Archimedes’ Principle 
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If the raft is floating: 
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11.6 Archimedes’ Principle 

Conceptual Example 10  How Much Water is Needed 

to Float a Ship? 

 

A ship floating in the ocean is a familiar sight.  But is all 

that water really necessary?  Can an ocean vessel float 

in the amount of water than a swimming pool contains? 



11.6 Archimedes’ Principle 



11.7 Fluids in Motion 

In steady flow the velocity of the fluid particles at any point is constant  

as time passes. 

Unsteady flow exists whenever the  velocity of the fluid particles at a  

point changes as time passes. 

Turbulent flow is an extreme kind of unsteady flow in which the  velocity  

of the fluid particles at a point change erratically in both magnitude and  

direction. 



11.7 Fluids in Motion 

Fluid flow can be compressible or incompressible.  Most liquids are  

nearly incompressible. 

 

Fluid flow can be viscous or nonviscous. 

 

An incompressible, nonviscous fluid is called an ideal fluid. 

 



11.7 Fluids in Motion 

When the flow is steady, streamlines are often used to represent 

the trajectories of the fluid particles. 



11.7 Fluids in Motion 

Making streamlines with dye 

and smoke. 



11.8 The Equation of Continuity 

The mass of fluid per second that flows through a tube is called 

the mass flow rate. 



11.8 The Equation of Continuity 
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11.8 The Equation of Continuity 

222111 vAvA  

EQUATION OF CONTINUITY 

 

The mass flow rate has the same value at every position along a  

tube that has a single entry and a single exit for fluid flow. 

SI Unit of Mass Flow Rate:  kg/s 



11.8 The Equation of Continuity 

Incompressible fluid:   2211 vAvA 

Volume flow rate Q:   AvQ 



11.8 The Equation of Continuity 

Example 12  A Garden Hose 

 

A garden hose has an unobstructed opening 

with a cross sectional area of 2.85x10-4m2.   

It fills a bucket with a volume of 8.00x10-3m3 

in 30 seconds. 

 

Find the speed of the water that leaves the hose 

through (a) the unobstructed opening and (b) an obstructed 

opening with half as much area. 



11.8 The Equation of Continuity 
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11.9 Bernoulli’s Equation 

The fluid accelerates toward the  

lower pressure regions. 
According to the pressure-depth 

relationship, the pressure is lower 

at higher levels, provided the area 

of the pipe does not change. 



11.9 Bernoulli’s Equation 
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11.9 Bernoulli’s Equation 
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BERNOULLI’S EQUATION 

 

In steady flow of a nonviscous, incompressible fluid, the pressure, the  

fluid speed, and the elevation at two points are related by: 
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11.10 Applications of Bernoulli’s Equation 

Conceptual Example 14  Tarpaulins and Bernoulli’s Equation 

 

When the truck is stationary, the  

tarpaulin lies flat, but it bulges outward 

when the truck is speeding down 

the highway. 

 

Account for this behavior. 



11.10 Applications of Bernoulli’s Equation 



11.10 Applications of Bernoulli’s Equation 



11.10 Applications of Bernoulli’s Equation 



11.10 Applications of Bernoulli’s Equation 

Example 16  Efflux Speed 

 

The tank is open to the atmosphere at 

the top.  Find an expression for the speed  

of the liquid leaving the pipe at 

the bottom. 



11.10 Applications of Bernoulli’s Equation 
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11.11 Viscous Flow 

Flow of an ideal fluid. 

Flow of a viscous fluid. 



11.11 Viscous Flow 

FORCE NEEDED TO MOVE A LAYER OF VISCOUS FLUID WITH 

CONSTANT VELOCITY 

 

The magnitude of the tangential force required to move a fluid  

layer at a constant speed is given by: 

y

Av
F




coefficient  

of viscosity 

SI Unit of Viscosity:  Pa·s 

 

Common Unit of Viscosity:  poise (P) 

 

1 poise (P) = 0.1 Pa·s 



11.11 Viscous Flow 

POISEUILLE’S LAW 

 

The volume flow rate is given by: 
 

L

PPR
Q
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11.11 Viscous Flow 

Example 17  Giving and Injection 

 

A syringe is filled with a solution whose  

viscosity is 1.5x10-3 Pa·s.  The internal 

radius of the needle is 4.0x10-4m. 

 

The gauge pressure in the vein is 1900 Pa. 

What force must be applied to the plunger, 

so that 1.0x10-6m3 of fluid can be injected  

in 3.0 s? 



11.11 Viscous Flow 
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11.11 Viscous Flow 
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