Chapter 12
Equilibrium and Elasticity




12.1 Physics and Equilibrium

« What allows objects to be stable in spite of forces
acting on It?

 Under what conditions do objects deform?



12.2 Equilibrium

The two requirements for the state of equilibrium
are.

1. The linear momentum of its center of mass is
constant.

2. Its angular momentum about its center of mass,
or about any other point, is also constant.

The balancing rock of Fig. 12-1 is an example of
an object that is in static equilibrium. That is, in
this situation the constants in the above
requirements are zero;

Fig. 12-1 A balancing rock. Although
its perch seems precarious, the rock is
in static equilibrium. (Symon
Lobsang/Photis/ Jupiter Images
Corp.)



12.3 The Requirements of Equilibrium

1. The vector sum of all the external forces that act on the body must be zero.

2. The vector sum of all external torques that act on the body, measured about any
possible point, must also be zero.

—

Foi =0 (balance of forces). + Toet = 0 (balance of torques).

Balance of Balance of
forces torques

F netx 0 Thetx = 0

F nety 0 Thety — 0

F netz — 0 Tnetz — 0

Another requirement for static equilibrium:

3. The linear momentum P of the body must be zero.



12.4 The Center of Gravity

¥ The gravitational force !_7; on a body effectively acts at a single point, called the
center of gravity (cog) of the body.

¥ 1If ¢ is the same for all elements of a body, then the body’s center of gravity (cog) is
coincident with the body’s center of mass (com).

Fig. 12-4 (a) An element of mass m; in f !

an extended body. The gravitational force

E{- on the element has moment arm x; about m,

the origin O of the coordinate system. (b) =/

The gravitational force F, on a body is said | F cog

to act at the;:}enter of gravity (cog) of the | ~Line of l;:

body. Here F, has moment arm x,, about A aﬁf“ Ly .

origin O. B / i L / xc“g\Line of
Moment Moment action
arim arm

(a) (b)



Example, static equilibrium:

In Fig. 12-5a, a ladder of length L. = 12 m and mass m = 45
kg leans against a slick wall (that 1s, there 1s no friction be-
tween the ladder and the wall). The ladder’s upper end is at

TI]ELZ = D

!

—(h)(F,) + (al2)(Mg) + (al3)(mg)

height & = 9.3 m above the pavement on which the lower + (0)(F,,) + (0)(F,,) = 0. (12-18)
end is supported (the pavement is not frictionless). The
ladder’s center of mass is L/3 from the lower end, along the e e E—
length of the ladder. A firefighter of mass M = 72 kg climbs a=VL"=h"=758m.
the ladder until her center of mass is L/2 from the lower
end. What then are the magnitudes of the forces on the lad- F = ga(M2 + m/3)
der from the wall and the pavement? ! h
Frictionless _ (98 m/s?)(7.58 m)(72/2 kg + 45/3 kg)
S 9.3 m
t
- /7 PVEm = 407N~ 410N, (Answer)
F,—F, =0,
Fret, =0 mmmp ’
F, =F,=410N.
Fi L
re-
h fighter F,, — Mg—mg=0,
com — ‘
FHE‘J 0 F,,=(M + m)g = (72 kg + 45 kg)(9.8 m/s?)
Ladder '
com = 1146.6 N = 1100 N.




Example, static equilibrium:

Figure 12-6a shows a safe (mass M = 430 kg), hanging by a
rope (negligible mass) from a boom (¢ = 1.9 m and b = 2.5
m) that consists of a uniform hinged beam (m = 85 kg) and
horizontal cable (negligible mass).

(a) What is the tension 7, in the cable? In other words, what
is the magnitude of the force 7, on the beam from the cable?

Calculations: Let us start with Eq. 12-9 (Tnet" = (). Note
that we are asked for the magnitude of force T. and not of
forces E,; and F acting at the hinge, at point O. To eliminate
E, and F from the torque calculation, we should calculate
torques about an axis that is perpendicular to the figure at
point O.Then 1_:; and I?; will have moment arms of zero. The
lines of action for TC, f, and mg are dashed in Fig. 12-6b.
The corresponding moment arms are a, b, and b/2.

Writing torques in the form of r, Fand using our rule about

signs for torques, the balancing equation 7, , = 0 becomes
(a)(T) = (bUT,) — (3b)(mg) = 0. (12-19)
Substituting Mg for T, and solving for 7, we find that
gb(M + %m)
a

(98 m/s?)(2.5 m)(430 kg + 85/2 kg)
B 1.9m

= 6093 N = 6100 N. (Answer)

T =

C




Example, static equilibrium, cont.: ‘ ‘
(b) Find the magnitude F of the net force on the beam from

the hinge.
Calculations: For the horizontal balance, we write
Fier. = 0 as

F,—T,=0, (12-20)
and so F, = T,= 6093 N.

For the vertical balance, we write Fpe, = 0 as

F,—mg—T,=0.

Substituting Mg for T, and solving for F,, we find that

F, = (m + M)g = (85 kg + 430 kg)(9.8 m/s?)
= 5047 N.

From the Pythagorean theorem, we now have

F=VF}+ F2

= V(6093 N)2 + (5047 N)2 =~ 7900N.  (Answer)

Note that Fis substantially greater than either the combined
weights of the safe and the beam, 5000 N, or the tension in
the horizontal wire, 6100 N.




Example, static equilibrium:

In Fig. 12-7a, a uniform beam, of length L and mass
m = 1.8 kg, is at rest on two scales. A uniform block, with
mass M = 2.7 kg, is at rest on the beam, with its center a dis-
tance L/4 from the beam’s left end. What do the scales read?

System ~
L

L
D —

|
Block
Beam
| LC ‘
L |Scale

Scale

(a)

,
| |
| |
| |
| |
| |
| |
| |
| |
| |
¥ | |
| |
| |
LK : I ;
| . The vertical forces balance
| | but that is not enough.
| |
I | —
—= | F
| 2 | r
L | |
o |
X
Block _~ Beam
Fg,bﬂm =mg

We must also balance
torques, with a wise
choice of rotation axis.

(Fnet,x:{]) — FEJFFr—Mg—mg:O.

.Tnet.z = 0

l

(0)(F)) — (L/4)(Mg) — (L12)(mg) + (L)(F,) = 0.

4

= 1Mg + 3mg

= %(2.? kg)(9.8 m/s?) + %(1.8 ke)(9.8 m/s?)

= 1544 N=15N. (Answer)

I:(M+m)g_Fr

— (2.7kg + 1.8 kg)(9.8 m/s?) — 15.44 N

= 28.66 N = 29 N, (Answer)



12.6: Intermediate Structures

Fig. 12-8 The table is an indeterminate
structure. The four forces on the table legs
differ from one another in magnitude and
cannot be found from the laws of static
equilibrium alone.



12.7: Elasticity

A stress is defined as deforming force per unit area, which produces a
strain, or unit deformation.

Stress and strain are proportional to each other. The constant of
proportionality is called a modulus of elasticity.

BT
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Fig. 12-10 (a) A cylinder subject to fensile stress stretches by an amount AL. (b) A
cylinder subject to shearing stress deforms by an amount Ax, somewhat like a pack of
playing cards would. (¢) A solid sphere subject to uniform hydraulic stress from a fluid
shrinks in volume by an amount AV. All the deformations shown are greatly exaggerated.



12.7: Elasticity: Tension and Compression

For simple tension or compression, the stress
on the object is defined as F/A, where F is Ultimate Rupture ~
the magnitude of the force applied RSUgn
perpendicularly to an area A on the object.

Yield

- . - - h - -
The strain, or unit deformation, is then the S | I Range of permanent
dimensionless quantity AL/L, the fractional X deformation
change in a length of the specimen. % ||~ Linear (elastic) range
b=
W

The modulus for tensile and compressive

stresses is called the Young’s modulus and - Strain (AL/L)

IS represented in engineering practice by the

symbol E. F AL Fig. 12-12 A stress—strain curve for a
a1 E AR steel test specimen. The specimen

deforms permanently when the stress
IS equal to the yield strength of the
specimen’s material. It ruptures when
the stress is equal to the ultimate
strength of the material.



12.7: Elasticity: Shearing

In the case of shearing, the stress is also a force per unit area, but the force
vector lies in the plane of the area rather than perpendicular to it. The strain is
the dimensionless ratio Ax/L, with the quantities defined as shown in the
figure. The corresponding modulus, which is given the symbol G in
engineering practice, is called the shear modulus.

i
»J]‘I&



12.7: Elasticity: Hydraulic Stress

In the figure, the stress is the fluid pressure p on the object, where pressure is
a force per unit area.

The strain is AV/V, where V is the original volume of the specimen and AV is
the absolute value of the change in volume.

The corresponding modulus, with symbol B, is called the bulk modulus of
the material. The object is said to be under hydraulic compression, and the
pressure can be called the hydraulic stress.

AV
:B—
P %
j/
: P , AV

/\*’\TK



12.7: Elasticity

Table 12-1

Some Elastic Properties of Selected Materials of Engineering Interest

Young’s Ultimate Yield
Density p Modulus £ Strength S, Strength S,
Material (kg/m?) (10° N/m?) (10° N/m?) (10° N/m?)
Steel” 7860 200 400 250
Aluminum 2710 70 110 95
Glass 2190 065 507 —
Concrete® 2320 30 40P —
Wood? 525 13 50° —
Bone 1900 9b 170° —
Polystyrene 1050 3 48 —
?Structural steel (ASTM-A36). ’In compression.

‘High strength iDouglas fir.



Example, elongated rod

One end of a steel rod of radius R = 9.5 mm and length
L =81 cm is held in a vise. A force of magnitude
F = 62 kN is then applied perpendicularly to the end face
(uniformly across the area) at the other end, pulling di-
rectly away from the vise. What are the stress on the rod
and the elongation AL and strain of the rod?

KEY IDEAS

(1) Because the force is perpendicular to the end face and
uniform, the stress is the ratio of the magnitude F of the
force to the area A. The ratio is the left side of Eq. 12-23.
(2) The elongation AL is related to the stress and Young's
modulus E by Eq. 12-23 (F/A = E AL/L). (3) Strain is the
ratio of the elongation to the initial length L.

Calculations: To find the stress, we write

s o £ F___ 62X10°N
A @R (m)(95 X 103 m)

=22 X 10¥ N/m?.

(Answer)

The yield strength for structural steel is 2.5 X 108 N/m?, so
this rod is dangerously close to its yield strength.

We find the value of Young’s modulus for steel in Table
12-1.Then from Eq. 12-23 we find the elongation:

_ (FIA)L (2.2 X 10°N/m?)(0.81 m)
 E 20X 10"N/m?
=89 X 107*m = (0.89 mm.
For the strain, we have

AL 89x107*m

L 08lm

=11 X107 =0.11%.

AL

(Answer)

(Answer)



Example, wobbly table

A table has three legs that are 1.00 m in length and a fourth
leg that is longer by d = 0.50 mm, so that the table wobbles
slightly. A steel cylinder with mass M = 290 kg is placed on
the table (which has a mass much less than M) so that all
four legs are compressed but unbuckled and the table is
level but no longer wobbles. The legs are wooden cylinders
with cross-sectional area A = 1.0 cm? Young’s modulus is
E = 1.3 X 10" N/m?. What are the magnitudes of the forces
on the legs from the floor?

e COIM
{
Ik
A
_ E,
F, '
bl f

We take the table plus steel cylinder as our system.
The situation is like that in the figure. If the tabletop
remains level, the legs must be compressed in the
following ways: Each of the short legs must be
compressed by the same amount (call it AL;) and
thus by the same force of magnitude F;.The single
long leg must be compressed by a larger amount AL,
and thus by a force with a larger magnitude F,.

AL,—AL,+d ™ EL _BL
AE AE ‘
FDE[.}':D:‘SFB_FFLI-_Mg:D‘
- Mg _ dAE
- 4 4L
(290 kg)(9.8 m/s?)
B 4
(5.0 X 107*m)(10~* m?*)(1.3 X 10' N/m?)
(4)(1.00 m)
=548 N = 5.5 X 10> N. (Answer)
= Mg — 3F; = (290 kg)(9.8 m/s?) — 3(548 N)
~ 1.2 kN (Answer)



