
Chapter 13 

Gravitation 



13.2 Newton’s Law of Gravitation 

Here m1 and m2 are the masses of the particles, r is the distance between 

them, and G is the gravitational constant.  

 

G =6.67 x1011 Nm2/kg2 

 =6.67 x1011 m3/kg  s2. 

Fig. 13-2 (a) The gravitational force on particle 1 due to particle 2 is an attractive force because particle 1 is 

attracted to particle 2. (b) Force is directed along a radial coordinate axis r extending from particle 1 through 

particle 2. (c) is in the direction of a unit vector   along the r axis. r̂



13.2 Newton’s Law of Gravitation 

A uniform spherical shell of matter 

attracts a particle that is outside the 

shell as if all the shell’s mass were 

concentrated at its center. 



12.3 Gravitation and the Principle of Superposition 

For n interacting particles, we can write the principle of superposition for 

the gravitational forces on particle 1 as 

 

 

 

Here F1,net is the net force on particle 1 due to the other particles and, for 

example, F13 is the force on particle 1 from particle 3, etc. Therefore,  

The gravitational force on a particle from a real (extended) object can be 

expressed as: 

 

 

Here the integral is taken over the entire extended object . 



Example, Net Gravitational Force: 

Calculations: 

Figure 13-4a shows an arrangement of three 

particles, particle 1 of mass m1= 6.0 kg and 

particles 2 and 3 of mass m2=m3=4.0 kg, and 

distance a =2.0 cm. What is the net gravitational 

force 1,net on particle 1 due to the other 

particles? 

Relative to the positive direction of the x axis, the 

direction of F1,net is:  



13.4: Gravitation Near Earth’s Surface 

If the particle is released, it will fall toward 

the center of Earth, as a result of the 

gravitational force , with an acceleration 

we shall call the gravitational acceleration 

ag. Newton’s second law tells us that 

magnitudes F and ag are related by 

 

 

If the Earth is a uniform sphere of mass M, 

the magnitude of the gravitational force 

from Earth on a particle of mass m, located 

outside Earth a distance r from Earth’s 

center, is 

 

 

Therefore,  



13.4: Gravitation Near Earth’s Surface 

Any g value measured at a given location will 

differ from the ag value given before for that 

location for three reasons:  

(1) Earth’s mass is not distributed uniformly,  

(2) Earth is not a perfect sphere, and  

(3) Earth rotates.  

 

For the same three reasons, the measured 

weight mg of a particle also  differs from 

The magnitude of the gravitational force on 

the particle. 



Example, Difference in Accelerations 



13.5: Gravitation Inside Earth 

A uniform shell of matter exerts no net 

gravitational force on a particle located 

inside it. 

 
Sample Problem 

Three explorers attempt to travel by capsule 

through a tunnel directly from the south pole to 

the north pole. According to the story, as the 

capsule approaches Earth’s center, the  

gravitational force on the explorers becomes 

alarmingly large and then, exactly at the center, 

it suddenly but only momentarily disappears. 

Then the capsule travels through the second 

half of the tunnel, to the north pole. 

Check this story by finding the gravitational 

force on the capsule of mass m when it reaches 

a distance r from Earth’s center. Assume that 

Earth is a sphere of uniform density r (mass 

per unit volume). 

Calculations:  

 

 

 

 

 

 

 

 

 

 

 

The force magnitude depends linearly on the 

capsule’s distance r from Earth’s center. 

Thus, as r decreases, F also decreases, until it 

is zero at Earth’s center. 

 



13.6: Gravitational Potential Energy 

The gravitational potential energy of the two-

particle system is: 

 

 

 

U(r) approaches zero as r approaches infinity 

and that for any finite value of r, the value of 

U(r) is negative. 

 

If the system contains more than two particles, 

consider each pair of particles in turn, calculate 

the gravitational potential energy of that pair 

with the above relation, as if the other particles 

were not there, and then algebraically sum the 

results. That is, 



13.6: Gravitational Potential Energy Let us shoot a baseball directly away from 

Earth along the path in the figure. We want to 

find the gravitational potential energy U of the 

ball at point P along its path, at radial distance 

R from Earth’s center.  

The work W done on the ball by the 

gravitational force as the ball travels 

from point P to a great (infinite) distance from 

Earth is:  

 

 

 

 

 

 

 

 

where W is the work required to move the ball 

from point P (at distance R) to infinity.  

Work can also be expressed in terms 

of potential energies as 



13.6: Gravitational Potential Energy 

 Path Independence 
The work done along each circular arc is zero, 

because the direction of F is perpendicular to 

the arc at every point. Thus, W is the sum of 

only the works done by F along the three radial 

lengths. 

 

The gravitational force is a conservative force. 

Thus, the work done by the gravitational 

force on a particle moving from an initial point 

i to a final point f is independent of the path 

taken between the points. The change DU in the 

gravitational potential energy from point i to 

point f is given by 

 

 

 

 

Since the work W done by a conservative force 

is independent of the actual path taken, the 

change DU in gravitational potential energy is 

also independent of the path taken. 



13.6: Gravitational Potential Energy: Potential Energy and Force 

The minus sign indicates that the force on mass m points radially 

inward, toward mass M. 



13.6: Gravitational Potential Energy: Escape Speed 

If you fire a projectile upward, there is a certain minimum initial speed that will 

cause it to move upward forever, theoretically coming to rest only at infinity.  

 

This minimum initial speed is called the (Earth) escape speed. 

 

Consider a projectile of mass m, leaving the surface of a planet (mass M, radius R) 

with escape speed v. The projectile has a kinetic energy K given by ½ mv2, and a 

potential energy U given by: 

 

 

 

When the projectile reaches infinity, it stops and thus has no kinetic energy. It 

also has no potential energy because an infinite separation between two bodies is 

our zero-potential-energy configuration. Its total energy at infinity is therefore 

zero. From the principle of conservation of energy, its total energy at the planet’s 

surface must also have been zero, and so 

 

 

 

 

This gives the escape speed  



13.6: Gravitational Potential Energy: Escape Speed 



Example: 



13.7: Planets and Satellites: Kepler’s Laws 

1. THE LAW OF ORBITS: All planets move in elliptical orbits, 

with the Sun at one focus. 



13.7: Planets and Satellites: Kepler’s Laws 

2. THE LAW OF AREAS: 

A line that connects a planet 

to the Sun sweeps out equal 

areas in the plane of the 

planet’s orbit in equal time 

intervals; that is, the rate 

dA/dt at which it sweeps out 

area A is constant. 

Angular momentum, L: 

 



13.7: Planets and Satellites: Kepler’s Laws 

3. THE LAW OF PERIODS: The square of the period of any planet 

is proportional to the cube of the semimajor axis of its orbit. 

Consider a circular orbit with radius r 

(the radius of a circle is equivalent to the 

semimajor axis of an ellipse). Applying 

Newton’s second law to the orbiting 

planet yields 

 

 

 

Using the relation of the angular velocity, 

w, and the period, T, one gets: 



Example, Halley’s Comet 



13.8: Satellites: Orbits and Energy 

As a satellite orbits Earth in an elliptical 

path, the mechanical energy E of the 

satellite remains constant. Assume that the 

satellite’s mass is so much smaller than 

Earth’s mass. 

The potential energy of the system is given 

by 

 

 

For a satellite in a circular orbit,  

 

 

Thus, one gets:  

 

 

 

 

For an elliptical orbit (semimajor axis a),  



Example, Mechanical Energy of a Bowling Ball 



13.9: Einstein and Gravitation 

The fundamental postulate of 

Einstein’s general theory of 

relativity about gravitation (the 

gravitating of objects toward 

each other) is called the 

principle of equivalence, 

which says that gravitation and 

acceleration are equivalent. 



13.9: Einstein and Gravitation: Curvature of Space 



13.9: Einstein and Gravitation: Curvature of Space 


