Chapter 13

Gravitation




13.2 Newton’s Law of Gravitation

1M,

F=G
=

(Newton's law of gravitation).

Here m; and m, are the masses of the particles, r is the distance between
them, and G is the gravitational constant.

G =6.67 x10% Nm?/kg?
=6.67 X101 m3/kg s2.
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Fig. 13-2 (a) The gravitational force on particle 1 due to particle 2 is an attractive force because particle 1 is
attracted to particle 2. (b) Force is directed along a radial coordinate axis r extending from particle 1 through
particle 2. (c) is in the direction of a unit vectorf along the r axis.



13.2 Newton’s Law of Gravitation

A uniform spherical shell of matter . :
attracts a particle that is outside the | {r-080N
shell as 1f all the shell’s mass were
concentrated at Its center.

Fig. 13-3 The apple pulls up on
Earth just as hard as Earth pulls
down on the apple.



12.3 Gravitation and the Principle of Superposition

For n interacting particles, we can write the principle of superposition for
the gravitational forces on particle 1 as

=1

Fioa=Fp+ Fs+ Fy+ Fis+---+ Fy,

Here F, . Is the net force on particle 1 due to the other particles and, for
example, F; is the force on particle 1 from particle 3, etc. Therefore,

n

—= —

Fi,m:t — 2 F]:‘-
i=2

The gravitational force on a particle from a real (extended) object can be
expressed as:

F, = Jdﬁi

Here the integral is taken over the entire extended object .



Example, Net Gravitational Force:

Figure 13-4a shows an arrangement of three
particles, particle 1 of mass m,= 6.0 kg and
particles 2 and 3 of mass m,=m;=4.0 kg, and
distance a =2.0 cm. What is the net gravitational
force 1,net on particle 1 due to the other
particles?

We want the forces »
(pulls) on particle 1,
not the forces on

. my
the other particles.

i

— Qa Q x

ms, "‘“1

Fig. 13-4
= (a)

Calculations:
Gmym,
Fo=—7—

L ,ﬂ'z
_(6.67 X 107" m¥kg-s?)(6.0 kg)(4.0 kg)
- (0.020 m)?

=4.00 X 107®N.

_ Gmym;

T (a)?

(6.67 X 1071 m¥kg-s?)(6.0 kg)(4.0 kg)
(0.040 m)?

=1.00 X 107®N.

Fiaat = V(F2)? + (= Fa)
= V(400 X 105N)2 + (=1.00 X 105 N)?
=41 % 107N, (Answer)

Relative to the positive direction of the x axis, the
direction of Fy . is:

i 400X 10N
- T 0 x 106N Y

“

f = tan~!

13



13.4: Gravitation Near Earth’s Surface

If the particle is released, it will fall toward

the center of Earth, as a result of the

gravitational force , with an acceleration o -
L . Variation of a, with Altitude
we shall call the gravitational acceleration

a.. Newton’s second law tells us that Altutude  a; Altitude
g . (km) (m/s?) Example
magnitudes F and a, are related by
Mean Earth
F=ma. 0 9.83 surface
; 88 9.80 MLt Everest
If the Earth is a uniform sphere of mass M, Highest crewed
the magnitude of the gravitational force 366 971 ba““ﬁ“ |
- Space shuttle
from Earth on a partlcle of mass m, located 00 870 rbit
outside Earth a distance r from Earth’s Communications
center, IS 35700 0.225 satellite
FeG Mi”-
2
Therefore,
GM

a, = ——.
2



13.4: Gravitation Near Earth’s Surface

Two forces act

Any g value measured at a given location will on this crate. 2l
differ from the a, value given before for that Pl
location for three reasons: ey ..
(1) Earth’s mass is not distributed uniformly, /! M \
(2) Earthis not a perfect sphere, and - R |
[ f North |
(3) Earth rotates. - Ah |
For the same three reasons, the measured \
weight mg of a particle also differs from L
The magnitude of the gravitational force on W e e
the particle. (@)
The normal force i The net
o is upward. " force is
Fig. 13-6 (a) A crate sitting on a scale at ] Fy toward
Earth’s equator, as seen by an observer s Y the center.
positioned on Earth’s rotation axis at some I;; So, the
point above the north pole. (b) A free-body ' crate's
diagram for the crate, with a radial r axis ex- The gravitational acceleration
tending from Earth’s center. The gravita- force is downward. Ym(_l;, 5160,

tional force on the crate i1s represented with
its equivalent ma ,. The normal force on the
crate from the scale is ﬁ Because of
Earth’s rotation, the crate has a centripetal
acceleration @ that is directed toward
Earth’s center.

(b)



Example, Difference in Accelerations

(a) An astronaut whose height /1 is 1.70 m floats “feet down™
in an orbiting space shuttle at distance r = 6.77 X 10° m away
from the center of Earth. What is the difference between the
gravitational acceleration at her feet and at her head?

KEY IDEAS

We can approximate Earth as a uniform sphere of mass M.
Then, from Eq.13-11, the gravitational acceleration at any dis-
tance r from the center of Earth is
GM
TL=—— E,
r
We might simply apply this equation twice, first with r =
6.77 X 10°m for the location of the feet and then with
r==677x10°m+ 1.70m for the location of the head.
However. a calculator may give us the same value for a, twice,
and thus a difference of zero, because £ is so much smaller
than r. Here’s a more promising approach: Because we have
a differential change dr in r between the astronaut’s feet and
head, we should differentiate Eq. 13-15 with respect to r.

(13-15)

Calculations: The differentiation gives us

GM
- E dr,

da, = -2 (13-16)

g r

where da, is the differential change in the gravitational
acceleration due to the differential change dr in r. For the
astronaut, dr = h and r = 6.77 X 10° m. Substituting data
into Eq. 13-16, we find

da = -2 (66? X 10_“ m:'ifkgSZ)(SQS % 1024kg)
’ (6.77 X 10°m)’

= —4.37 X 10~ m/s2,

(1.70 m)

(Answer)

where the M value is taken from Appendix C. This result
means that the gravitational acceleration of the astronaut’s
feet toward Earth is slightly greater than the gravitational
acceleration of her head toward Earth. This difference in
acceleration (often called a fidal effect) tends to stretch her
body, but the difference is so small that she would never even
sense the stretching, much less suffer pain from it.

(b) If the astronaut is now “feet down™ at the same or-
bital radius r = 6.77 X 10° m about a black hole of mass
M, = 1.99 x 10*! kg (10 times our Sun’s mass), what is the
difference between the gravitational acceleration at her
feet and at her head? The black hole has a mathematical
surface (event horizon) of radius Rj, =2.95 X 10*m.
Nothing, not even light, can escape from that surface or
anywhere inside it. Note that the astronaut is well outside
the surface (at r = 229R;,).

Calculations: We again have a differential change dr in r
between the astronaut’s feet and head, so we can again use
Eq. 13-16. However, now we substitute M, = 1.99 X 10* kg
for M. We find

o — o (667X 1071 m¥kg-s))(1.99 X 10% ke)
¢ (6.77 X 10°m)?

= —14.5 m/s%.

(1.70 m)

(Answer)

This means that the gravitational acceleration of the astro-
naut’s feet toward the black hole is noticeably larger than
that of her head. The resulting tendency to stretch her body
would be bearable but quite painful. If she drifted closer
to the black hole, the stretching tendency would increase
drastically.



13.5: Gravitation Inside Earth

A uniform shell of matter exerts no net
gravitational force on a particle located
Inside it.

Sample Problem

Three explorers attempt to travel by capsule
through a tunnel directly from the south pole to
the north pole. According to the story, as the
capsule approaches Earth’s center, the
gravitational force on the explorers becomes
alarmingly large and then, exactly at the center,
it suddenly but only momentarily disappears.
Then the capsule travels through the second
half of the tunnel, to the north pole.

Check this story by finding the gravitational
force on the capsule of mass m when it reaches
a distance r from Earth’s center. Assume that
Earth is a sphere of uniform density p (mass
per unit volume).

g =
A ~
74 N
/ \
/ \
/ \
/ \\
|
| * Mg |
\ |
\ /
\ b /
\ /
\ /
N 7
s 7
B Lot
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Calculations:
_ GmM,y
. g 5
2
{3
v — _ 47’ 4
Vins — PVins — P
.
R
47 Gmp
F=——".

fad

The force magnitude depends linearly on the
capsule’s distance r from Earth’s center.
Thus, as r decreases, F also decreases, until it
1s zero at Earth’s center.



13.6: Gravitational Potential Energy

The gravitational potential energy of the two-
particle system is:

GMm This pair has "3
U= — . potential energy \
U(r) approaches zero as r approaches infinity ng jl_)_._,} Here too.
and that for any finite value of r, the value of \
U(r) is negative. \
.i‘ﬁl - .i"lg - mg

If the system contains more than two particles,
consider each pair of particles in turn, calculate
the gravitational potential energy of that pair
with the above relation, as if the other particles b sty | it

n 4 th laebraicall h of the system 1s the sum of the gravitational
were not t erg, and then algebraically sum the potential energies of all three pairs of
results. That is, particles.

Gmym Gmm Gni-m
. 171en 11783 Pl
U = —( + + .

Fi2 I3 I3

Here too.

Fig. 13-8 A system consisting of three
particles. The gravitational potential energy




13.6: Gravitational Potential Energy | et s shoot a baseball directly away from

Earth along the path in the figure. We want to

d?J\ find the gravitational potential energy U of the
Work is done ball at point P along its path, at radial distance
as the baseball R from Earth’s center.

7 [[meyes upward: The work W done on the ball by the
gravitational force as the ball travels

from point P to a great (infinite) distance from
Earth is:

2

e P -

W = f F(r)-dT.
R

GMm
2

F(f} -d7 = F(r)drcos ¢ = —

dr,
-

= —GMmJ —dr— [GMm}
R

GMm GMm

R R

= () —

where W is the work required to move the ball
from point P (at distance R) to infinity.

Work can also be expressed in terms

of potential energies as

U — U= —W. U:W:_GMH?'

R




13.6: Gravitational Potential ENergy the work done along each circular arc is zero,
Path Independence

because the direction of F is perpendicular to
the arc at every point. Thus, W is the sum of
only the works done by F along the three radial
lengths.

The gravitational force is a conservative force.
Thus, the work done by the gravitational
force on a particle moving from an initial point
I to a final point f is independent of the path
taken between the points. The change AU in the
gravitational potential energy from point i to
point f is given by

AU=U;— U;=-W.

Since the work W done by a conservative force
is independent of the actual path taken, the
change AU in gravitational potential energy is
also independent of the path taken.



13.6: Gravitational Potential Energy: Potential Energy and Force

-
'
o)
'
Ea

The minus sign indicates that the force on mass m points radially
inward, toward mass M.



13.6: Gravitational Potential Energy: Escape Speed

If you fire a projectile upward, there is a certain minimum initial speed that will
cause it to move upward forever, theoretically coming to rest only at infinity.

This minimum initial speed is called the (Earth) escape speed.

Consider a projectile of mass m, leaving the surface of a planet (mass M, radius R)
with escape speed v. The projectile has a kinetic energy K given by %2 mv?, and a
potential energy U given by:

GMm
U:_

R

When the projectile reaches infinity, it stops and thus has no kinetic energy. It
also has no potential energy because an infinite separation between two bodies is
our zero-potential-energy configuration. Its total energy at infinity is therefore
zero. From the principle of conservation of energy, its total energy at the planet’s
surface must also have been zero, and so

GM
K+U=%mv2+(— R’”):U.

. 2GM
This gives the escape speed vENTR



13.6: Gravitational Potential Energy: Escape Speed

Table 13-2

Some Escape Speeds

Body Mass (kg) Radius (m) Escape Speed (km/s)
Ceres” 1.17 x 10% 3.8 X 10° 0.64
Earth’s moon? 7.36 X 10% 1.74 x 108 2.38

Earth 5.98 x 107 6.37 X 10° 11.2

Jupiter 1.90 x 10% 7.15 x 107 59.5

Sun 1.99 x 10% 6.96 x 10% 618

Sirius B? 2 X 10" 1 x 107 5200

Neutron star® 2 X 107 1 x 10 2 X 10°

“The most massive of the asteroids.
bA white dwarf (a star in a final stage of evolution) that is a companion of the bright star Sirius.
“The collapsed core of a star that remains after that star has exploded in a supernova event.



Example:

An asteroid, headed directly toward Earth, has a speed of
12 km/s relative to the planet when the asteroid is 10 Earth
radii from Earth’s center. Neglecting the effects of Earth’s
atmosphere on the asteroid, find the asteroid’s speed vy
when it reaches Earth’s surface.

KEY IDEAS

Because we are to neglect the effects of the atmosphere on
the asteroid, the mechanical energy of the asteroid—Earth
system is conserved during the fall. Thus, the final mechani-
cal energy (when the asteroid reaches Earth’s surface) is
equal to the initial mechanical energy. With kinetic energy K
and gravitational potential energy U, we can write this as

K+ U=K, + U, (13-29)

Also, if we assume the system is isolated, the system’s
linear momentum must be conserved during the fall.
Therefore, the momentum change of the asteroid and that of
Earth must be equal in magnitude and opposite in sign.
However, because Earth’s mass is so much greater than the
asteroid’s mass, the change in Earth’s speed is negligible
relative to the change in the asteroid’s speed. So, the change
in Earth’s kinetic energy is also negligible. Thus, we can
assume that the kinetic energies in Eq. 13-29 are those of the
asteroid alone.

Calculations: Let m represent the asteroid’s mass and M
represent Earth’s mass (5.98 X 10?* kg). The asteroid is ini-
tially at distance 10R; and finally at distance Ry, where R is

Earth’s radius (6.37 X 10° m). Substituting Eq. 13-21 for U
and %m v2 for K, we rewrite Eq. 13-29 as

GMm , GMm
= smvi — :
Rg 10Rg
Rearranging and substituting known values, we find
2GM 1
2 =vi+t 1 - —)
TV T TR, ( 10
= (12 X 10° m/s)?
N 2(6.67 X 10" m¥/kg-s?)(5.98 X 10* kg)
6.37 X 10°m
= 2.567 X 10® m?%/s?,

and

~mvi —
SMVF

0.9

v = 1.60 X 10* m/s = 16 km/s. (Answer)

At this speed, the asteroid would not have to be par-
ticularly large to do considerable damage at impact. If it
were only 5 m across, the impact could release about as
much energy as the nuclear explosion at Hiroshima.
Alarmingly, about 500 million asteroids of this size are
near Earth’s orbit, and in 1994 one of them apparently
penetrated Earth’s atmosphere and exploded 20 km
above the South Pacific (setting off nuclear-explosion
warnings on six military satellites). The impact of an aster-
oid 500 m across (there may be a million of them
near Earth’s orbit) could end modern civilization and
almost eliminate humans worldwide.



13.7: Planets and Satellites: Kepler’s Laws

1. THE LAW OF ORBITS: All planets move in elliptical orbits,
with the Sun at one focus.

:R; - R- .
7 R
,’f / N Fig. 13-12 A planet of mass m moving
'f M/‘B/ \.,‘ in an elliptical ot‘bit around the Sun.The
| T 7 ; Sun, of mass M, 1s at one focus F of the el-
\\ . e m_.‘ / lipse. The other focus i1s F', which 1s located
Mo #_..f'{ in empty space. Each focus is a distance ea
N _ P from the ellipse’s center, with ¢ being the
I eccentricity of the ellipse. The semimajor
i “ ] The Sun is at axis a of the ellipse, the perihelion (nearest

the Sun) distance R, and the aphelion (far-
thest from the Sun) distance R, are also
shown.

one of the two
focal points.



13.7: Planets and Satellites: Kepler’s Laws

The planet sweeps
out this area.

These are the two
momentum components.

Fig. 13-13 (a) In time At, the line r con-
necting the planet to the Sun moves through
an angle Af, sweeping out an area AA
(shaded). (b) The linear momentum p of the
planet and the components of p.

2. THE LAW OF AREAS:
A line that connects a planet
to the Sun sweeps out equal
areas in the plane of the
planet’s orbit in equal time
Intervals; that is, the rate
dA/dt at which it sweeps out
area A Is constant.

dA | ,do |,

= 5l = 3" w,

d % dt
Angular momentum, L:

L=rp, =(r)(mv,)=(r)(maor)
2

= mriw,
dA L
dt 2m



13.7: Planets and Satellites: Kepler’s Laws

3. THE LAW OF PERIODS: The square of the period of any planet
IS proportional to the cube of the semimajor axis of its orbit.

Consider a circular orbit with radius r

(the radius of a circle is equivalent to the

SemMimajor axis of an elllpse). Applymg Kepler's Law of Periods for the Solar
Newton’s second law to the orbiting System
planet ylelds Semimajor T°la®
GMm Axis Period (1073
o (m)(w’r). Planet a (10" m) T(y) y2/m?)
. . - Mercury 5.79 0.241 2.99
Using the relapon of the angular velocity, Venus 10.8 0.615 300
®, and the period, T, one gets: Earth 15.0 1.00 2.96
472 Mars 22.8 1.88 2.98
T2 = ( )r3 (law of periods). Jupiter 77.8 11.9 3.01
GM Saturn 143 29.5 2.98
Uranus 287 84.0 2.98
Neptune 450 165 2.99

Pluto 590 248 2.99




Example, Halley’s Comet

Comet Halley orbits the Sun with a period of 76 years and. in
1986, had a distance of closest approach to the Sun, its peri-
helion distance R,, of 8.9 X 10" m. Table 13-3 shows that this
is between the orbits of Mercury and Venus.

(a) What is the comet’s farthest distance from the Sun,
which is called its aphelion distance R,?

KEY IDEAS

From Fig. 13-12, we see that R, + R, = 2a, where a is the semi-
major axis of the orbit. Thus, we can find R, if we first find a.
We can relate a to the given period via the law of periods (Eq.
13-34) if we simply substitute the semimajor axis a for r.

Calculations: Making that substitution and then solving

for a, we have
GMT?2 \13
o= (SUT)"
If we substitute the mass M of the Sun, 1.99 X 10* kg, and

the period T of the comet, 76 years or 2.4 X 107 s, into Eq.
13-35, we find that a = 2.7 X 102 m. Now we have

(13-35)

R,=2a - R,
= (2)(2.7 X 102m) — 8.9 X 10 m

=53 %102 m. (Answer)

Table 13-3 shows that this is a little less than the semimajor
axis of the orbit of Pluto. Thus, the comet does not get far-
ther from the Sun than Pluto.

(b) What is the eccentricity e of the orbit of comet Halley?

KEY IDEA

We can relate e, a, and R, via Fig. 13-12,in which we see that

ea =a — R,.

Calculation: We have
- R R
e=— P -] (13-36)
a a
. 8.9 X 10" m
=1- T X 102m 0.97. (Answer)

This tells us that, with an eccentricity approaching unity, this
orbit must be a long thin ellipse.



13.8: Satellites: Orbits and Energy

As a satellite orbits Earth in an elliptical
path, the mechanical energy E of the
satellite remains constant. Assume that the
satellite’s mass is so much smaller than
Earth’s mass.

The potential energy of the system is given

by
B GMm

r

U=

For a satellite in a circular orbit,

GMm v?
s = m—,
r ¥
Thus, one gets:
FeK+lU— GMm — GMm
2r r
GMm
E=— (circular orbit).
2r

For an elliptical orbit (semimajor axis a),

B GMm

E =
2a

Fig. 13-15 Four orbits with different ec-
centricities ¢ about an object of mass M. All
four orbits have the same semimajor axis a
and thus correspond to the same total me-

chanical energy FE.

This is a plot of a
satellite's energies
versus orbit radius.

Energy

The kinetic energy
K(r) s positive.

The potential energy
and total energy
are negative.




Example, Mechanical Energy of a Bowling Ball

A playful astronaut releases a bowling ball, of mass m =
7.20 kg, into circular orbit about Earth at an altitude A of
350 km.

(a) What is the mechanical energy E of the ball in its
orbit?

KEY IDEA

We can get E from the orbital energy, given by Eq. 13-40
(E=—GMm]/2r), if we first find the orbital radius r. (It is
not simply the given altitude.)

Calculations: The orbital radius must be
r=R+h=6370km + 350 km = 6.72 X 10° m,

in which R is the radius of Earth. Then, from Eq. 13-40, the
mechanical energy is

- GMm

2r
B (6.67 x 1071 N-mszgz)(S.QS x 10% kg)(7.20 kg)

(2)(6.72 X 10°m)
— —2.14 X 1087 = =214 MJ.

E —

(Answer)

(b) What is the mechanical energy E, of the ball on the
launchpad at Cape Canaveral (before it, the astronaut, and
the spacecraft are launched)? From there to the orbit, what
is the change AE in the ball’s mechanical energy?

KEY IDEA

On the launchpad. the ball is not in orbit and thus Eq. 13-40
does not apply. Instead, we must find E, = K, + U, where
K, is the ball’s kinetic energy and Uj is the gravitational po-
tential energy of the ball-Earth system.

Calculations:To find U, we use Eq. 13-21 to write

_ GMm
R

~ (6.67 X 107" N-m%kg?)(5.98 X 10* kg)(7.20 kg)
6.37 X 10°m
= —4.51 X 108J = —451 M.
The kinetic energy K, of the ball is due to the ball’'s motion
with Earth’s rotation. You can show that K is less than 1 MJ,

which is negligible relative to U, Thus, the mechanical en-
ergy of the ball on the launchpad is

U[]:

E,=Ky+ Uy~0—451MJ = =451 MJ.  (Answer)

The increase in the mechanical energy of the ball from
launchpad to orbit is

AE = E — E, = (=214 MJ) — (—451 MJ)

= 237 M. (Answer)

This is worth a few dollars at your utility company.
Obviously the high cost of placing objects into orbit is not
due to their required mechanical energy.



13.9: Einstein and Gravitation

The fundamental postulate of
Einstein’s general theory of
relativity about gravitation (the
gravitating of objects toward
each other) is called the
principle of equivalence,
which says that gravitation and
acceleration are equivalent.

() (D)

Fig. 13-17 (a) A physicist in a box resting
on Earth sees a cantaloupe falling with
acceleration a = 9.8 m/s2. (b) If he and the
box accelerate in deep space at 9.8 m/s?%, the
cantaloupe has the same acceleration rela-
tive to him. It 1s not possible, by doing
experiments within the box, for the physicist
to tell which situation he 1s in. For example,
the platform scale on which he stands reads
the same weight in both situations.



13.9: Einstein and Gravitation: Curvature of Space

Curved space
near Earth
__~Parallel paths /

N\ Z

Flat space
far from
Earth

Converging }
paths

411

(¢ Earth

Fig. 13-18 (a)Two objects moving along lines of longitude toward the south pole
converge because of the curvature of Earth’s surface. (b) Two objects falling freely near
Earth move along lines that converge toward the center of Earth because of the curvature
of space near Earth. (¢) Far from Earth (and other masses), space is flat and parallel paths
remain parallel. Close to Earth, the parallel paths begin to converge because space is
curved by Earth’s mass.



13.9: Einstein and Gravitation: Curvature of Space

___—~ Paths of light
from quasar

Y

\ | = Apparen.t .
\ e quasar directions
o
Y /
\ !
\ /

| _— Galaxy or

\
\ .1 large black hole

" Final paths

Earth detector

(a) (b)

Fig. 13-19 (a) Light from a distant quasar follows curved paths around a galaxy or

a large black hole because the mass of the galaxy or black hole has curved the adjacent
space. If the light 1s detected, it appears to have originated along the backward extensions
of the final paths (dashed lines). () The Einstein ring known as MG1131+40456 on the
computer screen of a telescope. The source of the light (actually, radio waves, which are

a form of invisible light) is far behind the large, unseen galaxy that produces the ring;

a portion of the source appears as the two bright spots seen along the ring. (Courtesy
National Radio Astronomy Observatory)



