
Chapter 15 

Oscillations 



15.1 Oscillatory motion 

Motion which is periodic in time, that is, motion 

that repeats itself in time. 

 

Examples:  

• Power line oscillates when the wind blows 

past it 

• Earthquake oscillations move buildings 

 

Sometimes the oscillations are so severe, that the 

system exhibiting oscillations break apart.  



15.2 Simple Harmonic Motion 

In the figure snapshots of a simple 

oscillatory system is shown. A particle 

repeatedly moves back and forth about 

the point x=0. 

 

The time taken for one complete 

oscillation is the period, T. In the time 

of one T, the system travels from 

x=+xm, to –xm, and then back to its 

original position xm.  

 

The velocity vector arrows are scaled 

to indicate the magnitude of  the speed 

of the system at different times. At 

x=±xm, the velocity is zero. 



Frequency of oscillation is the number of oscillations that are 

completed in each second. 

 

The symbol for frequency is f, and the SI unit is the hertz 

(abbreviated as Hz). 

 

It follows that  
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Any motion that repeats itself is periodic or harmonic. 

 

If the motion is a sinusoidal function of time, it is called simple 

harmonic motion (SHM). 

 

Mathematically SHM can be expressed as: 
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Here,  

•xm is the amplitude (maximum displacement of the system) 

•t is the time 

• is the angular frequency, and  

• is the phase constant or phase angle 
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Figure a plots the displacement of two 

SHM systems that are different in 

amplitudes, but have the same period. 

 

Figure b plots the displacement of two 

SHM systems which are different in 

periods but have the same amplitude. 

 

The value of the phase constant term, , 

depends on the value of the 

displacement and the velocity of the 

system at time t = 0.  

 

Figure c plots the displacement of two 

SHM systems having the same period 

and amplitude, but different phase 

constants.  
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For an oscillatory motion with period T,  
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The cosine function also repeats itself when the argument 

increases by 2p. Therefore,   
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Here,  is the angular frequency, and measures the angle 

per unit time. Its SI unit is radians/second. To be consistent, 

 then must be in radians. 
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15.2 Simple Harmonic Motion 

The velocity of SHM: 
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The maximum value (amplitude) of velocity 

is xm. The phase shift of the velocity is p/2, 

making the cosine to a sine function. 

 

The acceleration of SHM is:  
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The acceleration amplitude is 2xm.  

 

In SHM a(t) is proportional to the displacement but opposite in 

sign. 



15.3 Force Law for SHM 

From Newton’s 2nd law: 
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SHM is the motion executed by a system subject to a 

force that is proportional to the displacement of the 

system but opposite in sign. 



15.3 The Force Law for Simple Harmonic Motion 

The block-spring system shown 

on the right forms a linear SHM 

oscillator. 

 

The spring constant of the 

spring, k, is related to the 

angular frequency, , of the 

oscillator: 
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Example: Force law: 



Example, force law: 
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Example, force law: 



15.4: Energy in Simple Harmonic Motion 

The potential energy of a linear oscillator 

is associated entirely with the spring.  
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The kinetic energy of the system is 

associated entirely with the speed of 

the block. 
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The total mechanical energy of the 

system: 
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Example, energy in SHM: 

Many tall building have mass dampers, 

which are anti-sway devices to prevent 

them from oscillating in a wind. The 

device might be a block oscillating at the 

end of a spring and on a lubricated track. 

If the building sways, say eastward, the 

block also moves eastward but delayed 

enough so that when it finally moves, the 

building is then moving back westward. 

Thus, the motion of the oscillator is out 

of step with the motion of the building.  

Suppose that the block has mass m = 

2.72 x 105 kg and is designed to oscillate 

at frequency f = 10.0 Hz and with 

amplitude xm = 20.0 cm. 

 

(a) What is the total mechanical energy 

E of the spring-block system? 



Example, energy, continued: 



15.5: An Angular Simple Harmonic Oscillator 

The figure shows an  example of angular 

SHM. In a torsion pendulum involves the 

twisting of a suspension wire as the disk 

oscillates in a horizontal plane. 

 

The torque associated with an angular 

displacement of q is given by:  

q 

is the torsion constant, and depends 

on the length, diameter, and material 

of the suspension wire.  

The period, T, relates to  as: 


p
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T 2 Here, I is the rotational inertia of the 

oscillating disk. 



Example, angular SHM: 

Figure a shows a thin rod whose length L is 12.4 cm 

and whose mass m is 135 g, suspended at its midpoint 

from a long wire. Its period Ta of angular SHM is measured 

to be 2.53 s. An irregularly shaped object, which we 

call object X, is then hung from the same wire, as in Fig. b, and its 

period Tb is found to be 4.76 s. What is the 

rotational inertia of object X about its suspension axis? 

 

Answer: The rotational inertia of either the rod or 

object X is related to the measured period. The rotational inertia of a 

thin rod about a perpendicular axis through its midpoint 

is given as 1/12 mL2.Thus, we have, for the rod in Fig. a, 

Now let us write the periods, once for the rod 

and once for object X: 

The constant , which is a property of the wire, is the same for both figures; only the periods 

and the rotational inertias differ. 

Let us square each of these equations, divide the second by the first, and solve the resulting 

equation for Ib. The result is 



15.6: Pendulums 

In a simple pendulum, a particle of mass 

m is suspended from one end of an 

unstretchable massless string of length L 

that is fixed at the other end. 

 

The restoring torque acting on the mass 

when its angular displacement is q, is: 
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 is the angular acceleration of the 
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This is true for small angular displacements, q.  



15.6: Pendulums 

A physical pendulum can have a 

complicated distribution of mass. If the 

center of mass, C, is at a distance of h 

from the pivot point (figure), then for small 

angular amplitudes, the motion is simple 

harmonic.  

 

The period, T, is: 
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Here, I is the rotational inertia of the pendulum about O. 



In the small-angle approximation we can assume that q << 1 

and use the approximation sin q   q.   Let us investigate up to 

what angle  q  is the approximation reasonably accurate?  

q (degrees)  q (radians)  sin q 

5   0.087   0.087 

10   0.174   0.174 

15   0.262   0.259  (1% off) 

20   0.349   0.342  (2% off) 

 

Conclusion: If we keep q < 10 °  we make less than 1 % error.
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Example, pendulum: 

In Fig. a, a meter stick swings about a pivot point at one end, at 

distance h from the stick’s center of mass. 

(a) What is the period of oscillation T? 

 

KEY IDEA: The stick is not a simple pendulum because 

its mass is not concentrated in a bob at the end opposite 

the pivot point—so the stick is a physical pendulum.  

 

Calculations: The period for a physical pendulum depends on the 

rotational inertia, I, of the stick about the pivot point. We can treat 

the stick as a uniform rod of length L and mass m. Then I =1/3 mL2, 

where the distance h is L.  

Therefore,  

Note the result is independent of the pendulum’s mass m. 



Example, pendulum, continued: 

(b) What is the distance L0 between the pivot point O of the stick and the center of oscillation of 

the stick? 

 

Calculations: We want the length L0 of the simple pendulum (drawn in Fig. b) that has the same 

period as the physical pendulum (the stick) of Fig. a. 



15.7: Simple Harmonic Motion and Uniform Circular Motion 

Consider a reference particle P’ moving in 

uniform circular motion with constant angular 

speed (w). 

 

The projection of the particle on the x-axis is 

a point P, describing motion given by: 
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This is the displacemnt equation of SHM.  

 

SHM, therefore, is the projection of 

uniform circular motion on a diameter of 

the circle in which the circular motion 

occurs. 



15.8: Damped Simple Harmonic Motion 

In a damped oscillation, the motion of 

the oscillator is reduced by an 

external force. 

 

Example: A block of mass m 

oscillates vertically on a spring on a 

spring, with spring constant, k.  

From the block a rod extends to a 

vane which is submerged in a liquid. 

The liquid provides the external 

damping force, Fd.  

 

 



Often the damping force, Fd, is proportional 

to the 1st power of the velocity v. That is,   
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15.8: Damped Simple Harmonic Motion 

The figure shows the 

displacement function x(t) 

for the damped oscillator 

described before. The 

amplitude decreases as xm 

exp (-bt/2m) with time.  
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Example, damped SHM:  

For the damped oscillator in the figure, m  250 g, k = 85 N/m, and 

b =70 g/s. 

 

(a) What is the period of the motion? 



(b) How long does it take for the amplitude of the damped oscillations to drop to half its initial 

value? 

Example, damped SHM, continued:  



(c) How long does it take for the mechanical energy to drop to one-half 

its initial value? 

Example, damped SHM, continued: 



15.9: Forced oscillations and Resonance 

When the oscillator is subjected to an external force that is 

periodic, the oscillator will exhibit forced/driven oscillations. 

 

Example: A swing in motion is pushed with a periodic force 

of angular frequency, d.    

 

There are two frequencies involved in a forced driven 

oscillator: 

 

I. , the natural angular frequency of the oscillator, without 

the presence of any external force, and 

 

II. d, the angular frequency of the applied external force. 



15.9: Forced oscillations and resonance 

Resonance will occur in the forced 

oscillation if the natural angular 

frequency, , is equal to d.  

 

This is the condition when the 

velocity amplitude is the largest, and 

to some extent, also when the 

displacement amplitude is the 

largest. The adjoining figure plots 

displacement amplitude as a function 

of the ratio of the two frequencies. 

Example: Mexico City collapsed in September 1985 when a 

major earthquake hit the western coast of Mexico. The 

seismic waves of the earthquake was close to the natural 

frequency of many buildings 


