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17.1 The Principle of Linear Superposition 

THE PRINCIPLE OF LINEAR SUPERPOSITION 

 

When two or more waves are present simultaneously at the same place, 

the resultant disturbance is the sum of the disturbances from the individual 

waves. 
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17.2 Constructive and Destructive Interference of Sound Waves 

If the wave patters do not shift relative to one another as time passes, 

the sources are said to be coherent. 

For two wave sources vibrating in phase, a difference in path lengths that 

is zero or an integer number (1, 2, 3, . . ) of wavelengths leads to constructive  

interference; a difference in path lengths that is a half-integer number 

(½ , 1 ½, 2 ½, . .) of wavelengths leads to destructive interference. 



17.2 Constructive and Destructive Interference of Sound Waves 

Example 1  What Does a Listener Hear? 

 

Two in-phase loudspeakers, A and B, are  

separated by 3.20 m.  A listener is stationed 

at C, which is 2.40 m in front of speaker B. 

 

Both speakers are playing identical 214-Hz  

tones, and the speed of sound is 343 m/s. 

 

Does the listener hear a loud sound, or no sound? 



17.2 Constructive and Destructive Interference of Sound Waves 

Calculate the path length difference. 
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Because the path length difference is equal to an integer (1)  

number of wavelengths, there is constructive interference, which 

means there is a loud sound. 



17.2 Constructive and Destructive Interference of Sound Waves 

Conceptual Example 2  Out-Of-Phase Speakers 

 

 

To make a speaker operate, two wires must be connected between the  

speaker and the amplifier.  To ensure that the diaphragms of  

the two speakers vibrate in phase, it is  

necessary to make these connections 

in exactly the same way.  If the wires for one 

speaker are not connected just as they are  

for the other, the diaphragms will vibrate 

out of phase.  Suppose in the figures (next slide),  

the connections are made so that the speaker 

diaphragms vibrate out of phase, everything 

else remaining the same.  In each case, what  

kind of interference would result in the overlap  

point? 



17.2 Constructive and Destructive Interference of Sound Waves 



17.3 Diffraction 

The bending of a wave around 

an obstacle or the edges of an 

opening is called diffraction. 



17.3 Diffraction 
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17.3 Diffraction 

D


 22.1sin Circular opening – first minimum 



17.4 Beats 

Two overlapping waves with slightly different frequencies gives rise  

to the phenomena of beats. 



17.4 Beats 

The beat frequency is the difference between the two sound 

frequencies. 



17.5 Transverse Standing Waves 

Transverse standing wave patters. 



17.5 Transverse Standing Waves 

In reflecting from the wall, a 

forward-traveling half-cycle 

becomes a backward-traveling 

half-cycle that is inverted. 

Unless the timing is right, the 

newly formed and reflected cycles 

tend to offset one another. 

Repeated reinforcement between 

newly created and reflected cycles 

causes a large amplitude standing 

wave to develop. 



17.5 Transverse Standing Waves 
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17.5 Transverse Standing Waves 

Conceptual Example 5  The Frets on a Guitar 

 

Frets allow a the player to produce a complete sequence of musical notes 

on a single string.  Starting with the fret at the top of the neck, each successive 

fret shows where the player should press to get the next note in the sequence. 

Musicians call the sequence the chromatic scale, and every thirteenth note  

in it corresponds to one octave, or a doubling of the sound frequency.  The  

spacing between the frets is greatest at the top of the neck and decreases with 

each additional fret further on down.  Why does the spacing decrease going  

down the neck? 



17.6 Longitudinal Standing Waves 

A longitudinal standing wave pattern on a slinky. 



17.6 Longitudinal Standing Waves 
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17.6 Longitudinal Standing Waves 

Example 6  Playing a Flute 

 

When all the holes are closed on one type of 

flute, the lowest note it can sound is middle 

C (261.6 Hz).  If the speed of sound is 343 m/s, 

and the flute is assumed to be a cylinder open 

at both ends, determine the distance L. 
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17.6 Longitudinal Standing Waves 

,5,3,1            
4









 n

L

v
nfnTube open at one end 



17.7 Complex Sound Waves 
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