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22.2 The Electric Field:
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Fig. 22-1 (a) A positive test charge
qp placed at point P near a charged ob-
ject. An electrostatic force F acts on the
test charge. (b) The electric field E at

point P produced by the charged object.

The Electric Field is a vector field.

The electric field, E, consists of a distribution of vectors,
one for each point in the region around a charged object,
such as a charged rod.

We can define the electric field at some point near the
charged object, such as point P in Fig. 22-1a, as follows:

*A positive test charge q,, placed at the point will
experience an electrostatic force, F.

*The electric field at point P due to the charged object is
defined as the electric field, E, at that point:

£
4

E= (electric field).

The Sl unit for the electric field is the newton per
coulomb (N/C).



22.2 The Electric Field:

Table 22-1

Some Electric Fields

Field Location

or Situation Value (N/C)

At the surface of a

uranium nucleus 3 x 1024
Within a hydrogen

atom, at a radius

0f 529 X 107 'm 5x 101
Electric breakdown

occurs in air 3 x 10°
Near the charged

drum of a photocopier 10°
Near a charged comb 103
In the lower atmosphere 102

Inside the copper wire
of household circuits 1072




22.3 Electric Field Lines:

- W Electric field lines extend away from positive charge (where they originate) and

- - toward negative charge (where they terminate).

—
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(a) « Atany point, the direction of a straight field line or
the direction of the tangent to a curved field line
gives the direction of at that point.

» The field lines are drawn so that the number of lines
per unit area, measured in a plane that is
perpendicular to the lines, is proportional to the
magnitude of E.
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Thus, E is large where field lines are close together

(m and small where they are far apart.

Fig. 22-2 (a) The electrostatic force
F acting on a positive test charge near a
sphere of uniform negative charge. (b)
The electric field vector E at the loca-
tion of the test charge, and the electric
field lines in the space near the sphere.
The field lines extend toward the nega-
tively charged sphere. (They originate
on distant positive charges.)



22.3 Electric Field Lines:

Positive test
: charge

b

Fig. 22-3 (a)The electrostatic force
¥ F on a positive test charge near a very

I 3
=
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- " . F $ > large, nonconducting sheet with uni-
< B = - : » formly distributed positive charge on
N E?-.— - T~ oneside. (b) The electric field vector E
) A d A f - B . at the location of the test charge, and
- X . - = » the electric field lines in the space
. t N - T " near the sheet. The field lines extend
- | . away from the positively charged

sheet. (¢) Side view of (b).

Fig. 22-4 Field lines for two equal positive
point charges. The charges repel each other.

(The lines terminate on distant negative ~ N -

charges.) To “see” the actual three-dimen-
sional pattern of field lines, mentally rotate

the pattern shown here about an axis passing - E
through both charges in the plane of the page.
The three-dimensional pattern and the elec- S 2

tric field it represents are said to have rota-
tional symmetry about that axis. The electric
field vector at one point is shown; note that it
is tangent to the field line through that point.



22.4 The Electric Field due to a Point Charge:

To find the electric field due to a point charge q (or charged particle) at any
point a distance r from the point charge, we put a positive test charge g, at that
point.

The direction of E is directly away from the point charge if q is positive, and
directly toward the point charge if g is negative. The electric field vector is:

. F 1
E = = (}; T (point charge).
qo  4mey r '

The net, or resultant, electric field due to more than one point charge can be
found by the superposition principle. If we place a positive test charge g, near
n point charges q,, d,, - - - , 4, then, the net force, F,, from the n point charges
acting on the test charge is

Fb=Fy+ Fy+ - + F,

The net electric field at the position of the test charge is
E F, K F
o_ for , T2 4 TOn

o do do do

— E]_ =4 E2 + - + E

e

E



Example, The net electric field due to three charges:

Figure 22-7a shows three particles with charges ¢, = +20,
q» = —20,and g; = —4(, each a distance d from the origin.
What net electric field E is produced at the origin?
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Find the net field —/

at this empty point. | \o
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P 2 Field ;[i::;ward E +E
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Fig. 22-7 (a) Three particles with charges ¢,.¢,. and g, are at the

same distance d from the origin. (b) The electric field vectors E,. E,

and E;, at the origin due to the three particles. (¢) The electric field
vector E; and the vector sum E; + E, at the origin.

1 20

E. =
: 47]'8[] d?

1 20 1 20

E +E= = 4
: E2 47]'8.:} dZ 47]'8[] dz
1 40
471'8(] dz *

From the symmetry of Fig. 22-7c, we
realize that the equal y components of our
two vectors cancel and the equal x
components add.

Thus, the net electric field at the origin
IS in the positive direction of the x axis and
has the magnitude

E = 2E,, = 2E;cos 30°

1 40 y 6.930
— (0.866) = ——~.
47]'8.[} d? ( ) 47]'50(}'2

= (2)



22.5 The Electric Field due to an Electric Dipole:

)

Dipole
center

-9

(a)

Up here the +q
field dominates.

*

e

Down here the —g
field dominates.

(B)

Fig. 22-8 (a) An electric dipole. The
electric field vectors E(+} and E yat point
P on the dipole axis result from the dipole’s
two charges. Point Pis at distances r(;, and
r(—yfrom the individual charges that make
up the dipole. (b) The dipole moment p of
the dipole points from the negative charge
to the positive charge.



22.5 The Electric Field due to an Electric Dipole:

From symmetry, the electric field E at point P—and also the fields E, and E_ due to the separate
charges that make up the dipole—must lie along the dipole axis, which we have taken to be a z axis.
From the superposition principle for electric fields, the magnitude E of the electric field at P is

Z

o E= Eu = Eq
|r I q 1 q
. darey 1y 4arey ri-,
E_,
_ q q
drey(z —3d)?  dme(z +3d)*
o [ Up here the +q C
field dominates. :
( 1 ]
@ - * E=- I 2 |/ 2/ 7\ |
dareyz” d \° d \*
| ; (1 ) (' + 50
d r Tf Y iy \ i
] ngf’;f E q 2d/z B q d
Q-7 =  darey2? ('1 B ( d ‘)2\)2  2mey2? (’l B ( d \)3‘)2+
Down here the —q , 22/, ‘ 2z /,
field dominates. 1 qd
(@ @ dz <1 = E
a) h 271'8[} Z
The product qd, which involves the two intrinsic
properties g and d of the dipole, is the magnitude |
p of a vector quantity known as the electric E = Pq (st

dipole moment of the dipole. 2mey z°



Example, Electric Dipole and Atmospheric

Sprites:

Fig. 22-9

(a)

Cloud

Charge
transfer

60 e Ground © L $+q

Sprites (Fig. 22-9a) are huge flashes that occur far
above a large thunderstorm. They are still not well
understood but are believed to be produced when
especially powerful lightning occurs between the
ground and storm clouds, particularly when the
lightning transfers a huge amount of negative
charge -g from the ground to the base of the
clouds (Fig. 22-9Db).

We can model the electric field due to the charges
in the clouds and the ground

by assuming a vertical electric dipole that has
charge -q at cloud height h and charge +q at
below-ground depth h (Fig. 22-9¢). If g =200 C
and h =6.0 km, what is the magnitude of

the dipole’s electric field at altitude z; =30 km
somewhat above the clouds and altitude z, =60
km somewhat above the stratosphere?

Il q(2h)

Y
2’7]'8{] Z

E =

where 24 is the separation between —q and +¢ in Fig. 22-9¢. For
the electric field at altitude z;, = 30 km, we find

(200 C)(2)(6.0 X 10° m)

b= (30 X 10°m)?
= 1.6 X 103 N/C. (Answer)

Similarly, for altitude z, = 60 km, we find
E=20X102N/C. (Answer)



22.6 The Electric Field due to a Line of Charge:

When we deal with continuous charge distributions, it is most convenient to
express the charge on an object as a charge density rather than as a total charge.
For a line of charge, for example, we would report the linear charge density

(or charge per unit length) A, whose Sl unit is the coulomb per meter.

Table 22-2 shows the other charge densities we shall be using.

Table 22-2

Some Measures of Electric Charge

Name Symbol  SI Unit
Charge q C
Linear charge

density A C/m
Surface charge
density o C/m?

Volume charge
density p C/m?




22.6 The Electric Field due to a We can mentally divide the ring into differential elements of

Line of Charge:

z —

dE

B

dlfcos 6

|

| .
6 | The perpendicular

| components just

|
cancel but the parallel
components add.

Fig. 22-10 A ring of uniform positive
charge. A differential element of charge

occupies a length ds (greatly exaggerated for

clarity). This element sets up an electric field
dE at point P. The component of dE along
the central axis of the ring is dE cos 6.

charge that are so small that they are like point charges, and
then we can apply the definition to each of them.

Next, we can add the electric fields set up at P by all the
differential elements. The vector sum of the fields gives us
the field set up at P by the ring.

Let ds be the (arc) length of any differential element of the
ring. Since A is the charge per unit (arc) length, the element
has a charge of magnitude dg = A ds.

This differential charge sets up a differential electric field dE
at point P, a distance r from the element.

1 dq 1 Ads

o &

dE =

dmey r dmey, 1

B 1 Ads
dme, (22 + R?)

All the dE vectors have components parallel and
perpendicular to the central axis; the perpendicular
components are identical in magnitude but point in different
directions.

The parallel components are dE cos 6 = Zz A 55 ds.
Finally, for the entire ring, A" + R

J‘ zZA J‘znﬁr
E= |dEcos = d
SO e R Jy ©

_ 2\@2mR)
darey(z2 + R?)?




Example, Electric Field of a
Charged Circular Rod

Figure 22-11a shows a plastic rod having a uniformly distrib-
uted charge — Q. The rod has been bent in a 120° circular arc
of radius r. We place coordinate axes such that the axis of
symmetry of the rod lies along the x axis and the origin is at
the center of curvature P of the rod. In terms of QO and r,
what is the electric field E due to the rod at point P?

This negatively charged rod These x components add.
Is obviously not a particle. Our job i1s to add all such

v components.
[ Plastic rod

of charge -0

¥

Symmetric
element ds’

/2 S 4
| |
(a)

Fig. 22-11 (a) A plastic rod of charge Q is a circular
section of radius r and central angle 120°; point P is the
center of curvature of the rod. (b) The field components
from symmetric elements from the rod.

0.4770
length 27r/3 ro

charge @ Q

dg = A ds.

JE — l dg 1 Ads

47]'8[] f‘z 47]'8{] f‘z

Our element has a symmetrically located
(mirror image) element ds in the bottom half of
the rod.

If we resolve the electric field vectors of ds

and ds’into x and y components as shown in we
see that their y components cancel (because
they have equal magnitudes and are in opposite
directions).We also see that their x components
have equal magnitudes and are in the same
direction.

60° 1 A
Ezdexzf 5~ Ccos Ordb
—@0° 47T80

60° 60°
= A J cos 0dO = A [sin 9}
471'8[].*' —a0® 47T£[]i‘ —&0°

S [sin 60° — sin(—60°)]

TTS(}F
_ 1734 _ 0830
B 47T8(}F . 47]-8'[]',‘2 l:



22.7 The Electric Field due to a Charged Disk: 1 dE

We need to find the electric field at point P, a distance z from the disk along its central
axis.

Divide the disk into concentric flat rings and then to calculate the electric field at point .
P by adding up (that is, by integrating) the contributions

of all the rings. The figure shows one such ring, with radius r and radial
width dr. If o is the charge per unit area, the charge on the ring is

dr -
dg = cdA = o7 dr). et
JE — zo2mr dr oz 2rdr
a2+ )2 dey (274 )
We can now find E by integrating dE over the surface of the disk— that is, by
integrating with respect to the variable r from r =0 to r =R.
- R - -2 4 p2)"12 |R
E = f dE =~ f (22 + r)22Q2r) dr. = -2 { +r) J .
dey Jo dg —2 0
a <
) p- (1 = —) (charged disk)
28 2 22+ R?
If we let R —o0, while keeping z finite, the second term in the parentheses in the above
equation approaches zero, and this equation reduces to o o
E=—— (infinite sheet).

28(}



22.8: A Point Charge in an Electric Field

¥ The electrostatic force F acting on a charged particle located in an external electric
field E has the direction of E if the charge g of the particle is positive and has the
opposite direction if g 1s negative.

B!
I

]

=

When a charged particle, of charge g, is in an electric field, E, set up by
other stationary or slowly moving charges, an electrostatic force, F, acts
on the charged particle as given by the above equation.



Measuring the Elementary Charge

Insulating
chamber

A A A A A A A Al wall

I——

Microscope

Fig. 22-14 The Millikan oil-drop appa-
ratus for measuring the elementary charge
e. When a charged oil drop drifted into
chamber C through the hole in plate Py, its
motion could be controlled by closing and
opening switch S and thereby setting up or
eliminating an electric field in chamber C,
The microscope was used to view the drop,
to permit timing of its motion.

22.8: A Point Charge in an Electric Field:

Ink-Jet Printing

Input
signals

Deﬂecung plate

H

Deflecting
plate

Fig. 22-15 Ink-jet printer. Drops shot
from generator G receive a charge in
charging unit C. An input signal from a
computer controls the charge and thus the
effect of field E where the drop lands on
the paper.



Example, Motion of a Charged Particle in an Electric Field

Figure 22-17 shows the deflecting plates of an ink-jet
printer, with superimposed coordinate axes. An ink drop
with a mass m of 1.3 X 107" kg and a negative charge of
magnitude Q = 1.5 X 1071 C enters the region between
the plates, initially moving along the x axis with speed v,
= 18 m/s. The length L of each plate is 1.6 cm. The plates
are charged and thus produce an electric field at all points
between them. Assume that field E is downward directed,
is uniform, and has a magnitude of 1.4 X 10° N/C. What is
the vertical deflection of the drop at the far edge of the
plates? (The gravitational force on the drop is small rela-
tive to the electrostatic force acting on the drop and can
be neglected.)

KEY IDEA

The drop is negatively charged and the electric field is directed
downward. From Eq. 22-28, a constant electrostatic force of
magnitude QF acts upward on the charged drop. Thus, as the
drop travels parallel to the x axis at constant speed v,, it
accelerates upward with some constant acceleration a,,

Calculations: Applying Newton's second law (F = ma) for
components along the y axis, we find that

F  QF
a,=—=—",
Y om m

(22-30)

Plate

=1l
=
i}
=
U L i

Plate

Fig. 22-17 Annk drop of mass m and charge magnitude Q is
deflected in the electric field of an ink-jet printer.

Let ¢ represent the time required for the drop to pass
through the region between the plates. During ¢ the vertical

and horizontal displacements of the drop are
y=3a,> and L =t (22-31)

respectively. Eliminating f between these two equations and
substituting Eq. 22-30 for a,,, we find

_ QEL?

2
2mvy

(1.5 X 1073 C)(1.4 X 105 N/C)(1.6 X 10-2m)?
(2)(1.3 X 10" 0kg)(18 m/s)?

=64 %X 10*m
= (.64 mm.

(Answer)



22.9: A Dipole in an Electric Field
When an electric dipole is placed in a region - -

where there is an external electric field, E, - ///:\. -
electrostatic forces act on the charged ends of N L /’ro __{f’
the dipole. If the . /% .
electric field is uniform, those forces act in L /L"Dm -
opposite directions and with the same - -, E—__

magnitude F =qE. - ~

Although the net force on the dipole from the (a)
fl_eld Is zero, and the center of mass of the e
dipole does not move, the forces on the into alignment.

charged ends do produce Z

a net torque zon the dipole about its center of =6 E
mass. o
The center of mass lies on the line connecting Fig. 22-19 (a) Anelectric dipole ina

the charged ends. at some distance x from one uniform external electric field E. Two cen-
' ters of equal but opposite charge are sepa-

end and a dlst_ance d -x from the other end. rated by distance d. The line between them
The net torque Is: represents their rigid connection. (b) Field

7= Fxsin @+ F(d — x)sin # = Fd sin 6.= pE sin 6. E causes a torque 7 on the dipole. The di-
rection of 7 1s into the page, as represented

C T = F X E (torque on a dipole). by the symbol ).



22.9: A Dipole in an Electric Field: Potential Energy

Potential energy can be associated with the orientation _': PN -
of an electric dipole in an electric field. = I —
— f;a -
The dipole has its least potential energy when it is in its . / oAl .
equilibrium orientation, which is when its moment p is _( o
lined up with the field E. —q E__
—F -
The expression for the potential energy of an electric — -
dipole in an external electric field is simplest if we (a)
choose the potential energy to be zero when the angle 4 The dipole is torqued
(Fig.22-19) is 90°. into alignment.
b =
The potential energy U of the dipole at any other ?@’ﬁ E >
value of dcan be found by calculating the work W done (b)

by the field on the dipole when the dipole is rotated to

Fig. 22-19 An electric dipole i
that value of @from 90°. ig (a) An electric dipole in a

uniform external electric field E. Two cen-
ters of equal but opposite charge are sepa-
L o rated by distance d. The line between them
= —j Tdf = j pEsin 6d6 = —pE cos 6. represents their rigid connection. (b) Field
E causes a torque 7 on the dipole. The di-

< rection of 7 1s into the page, as represented



Example, Torque, Energy of an Electric Dipole in an Electric Field

A neutral water molecule (H,O) in its vapor state has an
electric dipole moment of magnitude 6.2 X 1073° C-m.

(a) How far apart are the molecule’s centers of positive and
negative charge?

KEY IDEA

A molecule’s dipole moment depends on the magnitude g
of the molecule’s positive or negative charge and the charge
separation d.

Calculations: There are 10 electrons and 10 protons in a
neutral water molecule; so the magnitude of its dipole mo-

ment 1s p = qd = (10¢)(d).
in which d 1s the separation we are seeking and e is the ele-
mentary charge. Thus,

_p 62X 10"C'm
~ 10e  (10)(1.60 X 107 C)
=39 X 1072m = 3.9 pm.

d

(Answer)

This distance is not only small, but it is also actually smaller
than the radius of a hydrogen atom.

(b) If the molecule is placed in an electric field of 1.5 X
10* N/C, what maximum torque can the field exert on it?
(Such a field can easily be set up in the laboratory.)

KEY IDEA

The torque on a dipole is maximum when the angle 6 be-
tween p and E 15 90°.

Calculation: Substituting # = 90° in Eq. 22-33 yields

T=pEsinf
= (62 X 1070 C-m)(1.5 X 10* N/C)(sin %0°)
=03 X 107 N-m. (Answer)

(c) How much work must an external agent do to rotate this
molecule by 180° in this field, starting from its fully aligned
position, for which ¢ = 0?

KEY IDEA

The work done by an external agent (by means of a torque
applied to the molecule) is equal to the change in the mole-
cule’s potential energy due to the change in orientation.

Calculation: From Eq.22-40, we find
W, = Ugr — Uy
= (—=pE cos 180°) — (—=pE cos 0)
=2pE = (2)(6.2 X 107 C-m)(1.5 X 10*N/C)

=19 X 1072]. (Answer)



