Chapter 23

Gauss’ Law




23.1 What is Physics?:

Gauss’ law relates the electric fields at points on a
(closed) Gaussian surface to the net charge
enclosed by that surface.

— Spherical
Gaussian
surface

Fig. 23-1 A spherical Gaussian
surface. If the electric field vectors
are of uniform magnitude and point

radially outward at all surface points,

you can conclude that a net positive
distribution of charge must lie within
the surface and have spherical
symmetry.

Gauss’ law considers a hypothetical (imaginary) closed
surface enclosing the charge distribution.

This Gaussian surface, as it is called, can have any
shape, but the shape that minimizes our calculations of
the electric field is one that mimics the symmetry of the
charge distribution.



23.2: Flux
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Fig. 23-2 (a) A uniform airstream of velocity is perpendicular to the plane of a square loop of area A.(b)
The component of perpendicular to the plane of the loop is v cos &where @ is the angle between v

and a normal to the plane. (c) The area vector A is perpendicular to the plane of the loop and makes an
angle @with v. (d) The velocity field intercepted by the area of the loop. The rate of volume flow

through the loop is ®= (v cos H)A.

This rate of flow through an area is an example of a flux—a volume flux in this situation.
b =vAcosh=1v-A,



23.3: Flux of an Electric Field

The electric flux through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

Gaussian

surface \

Fig. 23-3 A Gaussian surface of arbitrary shape

immersed in an electric field. The surface is divided into Sesste
small squares of area 4A. The electric field vectors E and g K 6 ~
the area vectors AA for three representative squares, = 1%egetigutt-
marked 1, 2, and 3, are shown. ' S=ZuenEs

®=SF-AA | =
The exact definition of the flux of the electric field -
through a closed surface is found by allowing the area ¥ -
of the squares shown in Fig. 23-3 to become smaller )

and smaller, approaching a differential limit dA. The @20
area vectors then approach a differential limit dA.The

D>0

. Pierce , E Pierce
sum of Eq. 23-3 then becomes an integral: vare ' ]
AA

negative 2 positive

o = fﬁ E-dA (electric flux through a Gaussian surface). i D=0 flux

Skim: zero flux



Example, Flux through a closed cylinder, uniform field:

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field E.
with the cylinder axis parallel to the field. What is the flux
® of the electric field through this closed surface?

KEY IDEA

We can find the flux @ through the Gaussian surface by inte-
grating the scalar product E « dA over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap ¢. Thus, from Eq.23-4,

tb—j‘;E’-dZ

=fE’-dE+jE’-dZ+fE’-dE. (23-5)

b
For all points on the left cap, the angle #between E and
dA 1s 180” and the magnitude E of the field is uniform. Thus,

fﬁ-dﬁ' = jE(cos 180°) dA = —EjdA = —FA,

a

where [ dA gives the cap’s area A (= 7R?). Similarly, for the
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Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field. The cylinder axis is parallel to
the field direction.

right cap, where 6 = 0 for all points,

fE’-d,?i = jE(cosO) dA = EA.

Finally, for the cylindrical surface, where the angle 6is 90° at
all points,

fE'.dEi = jE(cos 90°) dA = 0.
b
Substituting these results into Eq. 23-5 leads us to

d=-FA+0+EA=0.

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

(Answer)



Example, Flux through a closed cube,

Non-uniform field:

A nonuniform electric field given by E = 3.0xi + 4.0j
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

The y component

) . Is a constant.
¥y Gaussian

surface E,
|
E
|
|
. ' x
E.‘(’
7 7~ The x component
x=10m x=30m depends on the
) value of x.

(a)

Right face: An area vector A is always
perpendicular to its surface and always points away
from the interior of a Gaussian surface. Thus, the
vector for any area element dA (small section) on
the right face of the cube must point in the positive
direction of the x axis. The most convenient way to
express the vector is in unit-vector notation,

dA = dAi.
@, = JE . dA = f{B.Uﬂ + 4.07) - (dA1)
= f [(3.0x)(dA)i - 1 + (4.0)(dA);] - 1]

= f (3.0xdA + 0) = 3.0‘[.}: dA.

Although x is certainly a variable as we move left to right across the figure, because the right face is
perpendicular to the x axis, every point on the face has the same x coordinate. (The y and z coordinates do

not matter in our integral.) Thus, we have

®, = 3.0 f (3.0)dA = CJ.UJ dA. = (9.0N/C)(4.0 m?*) =36 N-m*C.  (Answer)



Example, Flux through a closed cube,
Non-uniform field:

A nonuniform electric field given by E = 3.0xi + 4.0
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

The y component

Fig. 23-5 .
IS a constant.

¥ Gaussian
surface E,

=T

E

X

g “ The x component

x=1.0m x=30m depends on the
value of x.

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector dA points in
the negative direction of the x axis, and thus dA = —dAi
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x = 1.0 m. With these two
changes, we find that the flux @, through the left face is

@, = —12N-m?%C. (Answer)

Top face:The differential area vector a’A points in the posi-
tive direction of the y axis, and thus dA = dA] (Fig. 23-5e).
The flux @, through the top face is then

@, = J{S.Uxf + 4.0)) - (dA])
= J [(3.0x)(dA)i - | + (4.0)(dA)] - {]

:J{0+4.0dA):4.DJdA

= 16 N-m%C. (Answer)



23.4 Gauss’ Law:

Gauss’ law relates the net flux of an electric
field through a closed surface (a Gaussian
surface) to the net charge q.,. that is enclosed
by that surface.

e0® = Gopne (Gauss’ law).

£p % E-dA = Jeone  (Gauss’ law).

The net charge q,,. is the algebraic sum of all the
enclosed positive and negative charges, and it can be
positive, negative, or zero.

If g, IS positive, the net flux is outward; if q,,,. IS
negative, the net flux is inward.

S
3 \ , 52

Fig. 23-6 Two point charges, equal
in magnitude but opposite in sign, and
the field lines that represent their net
electric field. Four Gaussian surfaces
are shown in cross section. Surface §,
encloses the positive charge. Surface
S, encloses the negative charge.
Surface 5, encloses no charge. Surface
S, encloses both charges and thus no
net charge.



Example, Relating the net enclosed charge and the net flux:

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge. A Gaussian surface, shown in

cross section, encloses three of the plastic objects and the coin.

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin. The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if ¢, = g, = +3.1 nC, g, = gs = —5.9 nC, and g5 =
—3.1nC?

KEY IDEA

The net flux ® through the surface depends on the net
charge g, enclosed by surface S.

Calculation: The coin does not contribute to @ because it
1s neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.

Charges g4 and g5 do not contribute because they are out-
a1de enrfare ¥ Thev certainlv cond aelactrie fiald linec

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, g, is only the sum ¢, + ¢, +
qs and Eq.23-6 gives us

(]): Jenc _ QI—I_QQ—FQS
€0 €0
+3.1X10°C-59x10°C-31x107°C
8.85 X 10712 C*N-m?

= —670 N-m%C.

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.



Example, Enclosed charge in a
non-uniform field:

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field E=30x +4. U]
(E is in newtons per coulomb and x is in meters.)

KEY IDEA

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 (gy® = ¢.n0).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (®, =36 N-m?C), the left face (d,= —12
N - m?C),and the top face (®, = 16 N- m?/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector dA is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus. we have

Fig. 23-5 The y component
: s a constant.
¥ Gaussian
surface E,
|
E
|
|
J—Ji‘.’
Ex
7 .7~ The x component

x=1.0m x=3.0m  depends on the

value of x.

—

dA = —dAj,and we find

®, = =16 N-m?/C.
For the front face we have dA = dAk, and for the back face,
dA = —dAk When we take the dot product of the given elec-
tric field E =3.0x + 4.0] | with either of these expressions for
dA, we get 0 and thus there is no flux through those faces. We
can now find the total flux through the six sides of the cube:
=36-12+16-16+0+ 0) N-m%C
=24 N-m%C.

Enclosed charge: Next, we use Gauss' law to find the
charge ¢, enclosed by the cube:

Gone = &,® = (8.85 X 1072 CYN-m?)(24 N-m?/C)
=21x%107°C.

Thus, the cube encloses a net positive charge.

(Answer)



23.5 Gauss’ Law and Coulomb’s Law:

Figure 23-8 shows a positive point charge g, around
which a concentric spherical Gaussian surface of radius

r is drawn. Divide this surface into differential areas dA.

The area vector dA at any point is perpendicular
to the surface and directed outward from the interior.

From the symmetry of the situation, at any point the
electric field, E, is also perpendicular to the surface and
directed outward from the interior.

Thus, since the angle & between E and dA is zero, we
can rewrite Gauss’ law as

8{]% E . d;f == 80% E({A == (ICI]C‘
EE}E§ (-!IA = (.

E[}E(‘q’?ﬂ"j} =

£ 1 q

= — .
"-I-’ﬂ'gﬂ r-

Gaussian /
surface /

Fig. 23-8 A spherical Gaussian
surface centered on a point charge g.

This is exactly what Coulomb’s law yielded.



23.6 A Charged Isolated Conductor:

If an excess charge is placed on an isolated conductor, that
amount of charge will move entirely to the surface of the
conductor. None of the excess charge will be found within

the body of the conductor. Copper
surface

Gaussian

Figure 23-9a shows, in cross section, an isolated lump of surface

copper hanging from an insulating thread and having an (a)

excess charge g. The Gaussian surface is placed just inside
the actual surface of the conductor. The electric field inside
this conductor must be zero. Since the excess charge is not
inside the Gaussian surface, it must be outside that surface,

which means it must lie on the actual surface of the Gaussian
conductor. oo Hace
pper

surface

Figure 23-9b shows the same hanging conductor, but now )
Fig. 23-9 (a) A lump of copper with a

with a cavity that is totally within the conductor. A Gaussian =" _ : pe
) g ] ] charge g hangs from an insulating thread.

surface is drawn surrounding the cavity, close to its surface A Gaussian surface is placed within the
but inside the conducting body. Inside the conductor, there  metal.just inside the actual surface. (b) The

b flux th h thi G . £ lump of copper now has a cavity within it.
can be no Tux !’OUg IS NEW aussian Sl_Jr ace. A Gaussian surface lies within the metal,
Therefore, there is no net charge on the cavity walls; all close to the cavity surface.
the excess charge remains on the outer surface of the

conductor.



23.6 A Charged Isolated Conductor; The External Electric Field:

The electric field just outside the surface of a conductor is easy to
determine using Gauss’ law. +
Consider a section of the surface that is small enough to neglect any
curvature and thus the section is considered flat.
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A tiny cylindrical Gaussian surface is embedded in the section as in P E
Fig. 23-10: One end cap is fully inside the conductor, the other is I
fully outside, and the cylinder is perpendicular to the conductor’s . There is flux only
surface. (a) through the
The electric field E at and just outside the conductor’s surface must external end face.
also be perpendicular to that surface. + -
- . £ =
We assume that the cap area A is small enough that the field + -
magnitude E is constant over the cap. Then the flux through the cap [:DE:A
Is EA, and that is the net flux ® through the Gaussian surface. - . —
. . E=0 " =
The charge g, enclosed by the Gaussian surface lies on the N -
conductor’s surface in an area A. If ois the charge per unit area,
then g, Is equal to cA. (b)
Fig. 23-10 (a) Perspective view and (b)
C goLA = oA, side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface. A (closed) cylindrical
o . Gaussian surface, embedded perpendicu-
E = E— (conducting surface). larly in the conductor. encloses some of the
0

charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap. The external end cap has area A
and area vector A.



Example, Spherical Metal Shell,
Electric Field, and Enclosed Charge:

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of —5.0 uC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Gaussian +
surface \\. | //

(a) (&)

Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.

Reasoning: With a point charge of —5.0 uC within the
shell, a charge of +5.0 ©C must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall

can have a charge of +5.0 uC only if electrons, with a total
charge of —5.0 uC, leave the inner wall and move to the

outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.



23.7 Applying Gauss’ Law: Cylindrical Symmetry:

Figure 23-12 shows a section of an infinitely long cylindrical
plastic rod with a uniform positive linear charge density A.
Let us find an expression for the magnitude of the electric

field E at a distance r from the axis of the rod.

At every point on the cylindrical part of the Gaussian surface, 7
must have the same magnitude E and (for a positively

charged rod) must be directed radially outward.

The flux of E through this cylindrical surface is

® = EAcos ¢ = E(2qrh) cos 0 = E(27rh).

E_

ZTTE{}F

E{](I} = Yencs
eoE(27rh) = Ah,

(line of charge).

@

A

2y
»)

(Gaussian
surface

There is flux only
through the

| ecowomcomcowcowcoes 0

curved surface.

Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged. cylindrical

plastic rod.



Example, Gauss’ Law and an
upward streamer in a lightning storm:

Upward streamer in a lightning storm. The woman in Fig. 23-13
was standing on a lookout platform in the Sequoia National
Park when a large storm cloud moved overhead. Some of the
conduction electrons in her body were driven into the ground
by the cloud’s negatively charged base (Fig. 23-14a), leaving
her positively charged. You can tell she was highly charged
because her hair strands repelled one another and extended
away from her along the electric field lines produced by the

charge on her.
/
—{ <R

) Upward I

streamer

'ﬂ—"'/ \"‘—IF
e (=
(a) (b) (c)

Fig. 23-14 (a) Some of the conduction electrons in the
woman'’s body are driven into the ground, leaving her posi-
tively charged. (b) An upward streamer develops if the air
undergoes electrical breakdown, which provides a path for
electrons freed from molecules in the air to move to the
woman. (¢) A cylinder represents the woman.

Let’s model her body as a narrow vertical cylinder of
height L =1.8m and radius R=0.10m (Fig. 23-14c).
Assume that charge Q was uniformly distributed along the
cylinder and that electrical breakdown would have oc-
curred if the electric field magnitude along her body had
exceeded the critical value E. = 2.4 MN/C. What value of
Q would have put the air along her body on the verge of
breakdown? =

KEY IDEA

Because R < L, we can approximate the charge distribution
as a long line of charge. Further, because we assume that the
charge is uniformly distributed along this line, we can ap-
proximate the magnitude of the electric field along the side
of her body with Eq.23-12 (£ = A 2meyr).

Calculations: Substituting the critical value E_ for E, the
cylinder radius R for radial distance r, and the ratio Q/L for
linear charge density A, we have

E - O/L 1
ZWSOR
or QO = 2mweyRLE,.

Substituting given data then gives us
Q = (2m)(8.85 X 10712 C2/N-m?)(0.10 m)
X (1.8 m)(2.4 X 106 N/C)
= 2402 X 1075 C = 24 uC. (Answer)



23.8 Applying Gauss’ Law: Planar Symmetry

. ¥
Non-conducting Sheet: | -/0
+ + +
¥ ¥ *
Figure 23-15 shows a portion of a thin, infinite, nonconducting e T T :
sheet with a uniform (positive) surface charge density o. A L A i Gﬂlflssiﬂﬂ
sheet of thin plastic wrap, uniformly charged on one side, can EY e i T4 ;,“r e
serve as a simple model. q"'"j;:'jh_* e i
We need to find the electric field a distance r in front of the U A v g
sheet. B
A useful Gaussian surface is a closed cylinder with end caps of L Tois b el
area A, arranged to pierce the sheet perpendicularly as shown. o7 ( through the
. a
Erom symhmetryg E must be perpendicular to the sheet and . two end faces.
ence to the end caps.
Since the charge is positive, E is directed away from the sheet. - - -
There is no flux through this portion of the Gaussian surface. - ; -
- - — _|. —_—
Thus E.dA is simply EdA, and MF‘]—_ . __D?M
SﬂfﬁE'dA = {encs : : :
- f =
Su(EA + EA) - fTA.. (b}
Here oA is the charge enclosed by the Gaussian surface. Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
Therefore, plastic sheet, uniformly charged on one
side to surface charge density 0. A closed
E = ? (sheet of charge). cylindrical Gaussian surface passes through
0

the sheet and 1s perpendicular to it.



23.8 Applying Gauss’ Law: Planar Symmetry
Two Conducting Plates:

Figure 23-16a shows a cross section of a thin, infinite conducting
plate with excess positive charge. The plate is thin and very large,

and essentially all the excess charge is on the two large faces of the |

plate.
If there is no external electric field to force the positive charge into

some particular distribution, it will spread out on the two faces with @

uniform surface charge density of magnitude o;.

Just outside the plate this charge sets up an electric field of
magnitude E =o /&,

Figure 23-16b shows an identical plate with excess negative charge
having the same magnitude of surface charge density. Now the
electric field is directed toward the plate.

If we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c), the excess charge on one plate

attracts the excess charge on the other plate, and all the excess charge

moves onto the inner faces of the plates as in Fig. 23-16c.

With twice as much charge now on each inner face, the new surface
charge density, o, on each inner face is twice o,.Thus, the electric
field at any point between the plates has the magnitude

:2{]1 o

E = = .
€0 €0

01\4_ +/0'1 Ul\_ _/0'1
E L i[::» iﬂ* - di
- -

(a) (D)

20
+/ ]\—

4 _

i E.

E=0| | =——> [ |E=0
+ [—

4 _

+ —

(¢)

Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (h) An
identical plate with excess negative charge.
(¢) The two plates arranged so they are par-
allel and close.



Example, Electric Field:

Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are
O+ = 6.8 wC/m? for the positively charged sheet and Oy =
4.3 wC/m? for the negatively charged sheet.

Find the electric field E (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

KEY IDEA

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field E}ﬂ due to
the positive sheet is directed away from the sheet and, from
Eq. 23-13, has the magnitude
= T 6.8 X 107¢ C/m?2
() 2g,  (2)(8.85 X 1012 C2N-m?)

= 3.84 X 105 N/C.

Fig. 23-17 (a) Two large, paral- O

lel sheets, uniformly charged on

one side. (b) The individual elec-

tric fields resulting from the two
charged sheets. (¢) The net field

due to both charged sheets, found

by superposition. (a)

+FFFFFFFFFFFF

Similarly, at any point, the electric field E(_) due to the negative
sheet is directed roward that sheet and has the magnitude

o) 4.3 X 107° C/m?
28y (2)(8.85 X 10 2 CYN-m?)
= 2.43 X 10° N/C.
Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L), between them (B),and to their right (R).
The resultant fields in these three regions follow from the
superposition principle. To the left, the field magnitude is
By = ey 5 8o
= 3.84 X 10° N/C — 2.43 X 10° N/C
= 1.4 X 105 N/C.
Because E.is larger than E -, the net electric field E; in this
region is directed to the left, as Fig. 23-17c shows. To the right of
the sheets, the electric field has the same magnitude but is di-
rected to the right, as Fig. 23-17¢ shows.
Between the sheets, the two fields add and we have
Ep = E@) + B¢
= 3.84 X 10°N/C + 2.43 X 105 N/C

E-=

(Answer)

= 6.3 X 10°N/C. (Answer)
The electric field Ej is directed to the right.
+ — + —
— H —> — H
E+) # E(+) | E H B
T - T -
i — — i — — —
H L Ef, H EB | ER
i B B R {P-i —> | —
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23.9 Applying Gauss’ Law: Spherical Symmetry:

A shell of uniform charge attracts or repels a charged particle that is outside the shell as
if all the shell’s charge were concentrated at the center of the shell.
If a charged particle is located inside a shell of uniform charae, there is no electrostatic

force on the particle from the shell. Enclosed

charge is ¢
Y

Gaussian

surface
|

Fig. 23-19 The dots represent a
spherically symmetric distribution of
charge of radius R, whose volume

Fig. 23-18 A thin,uniformly charged, charge density p is a function only of

spherical shell with total charge g, 1n cross distance from the center. The charged

section.Two Gaussian surfaces S, and 5, object is not a conductor, and therefore

are also shown in cross section. Surface S, the charge is assumed to be fixed in

encloses the shell, and §, encloses only the position. A concentric spherical

empty interior of the shell. Gaussian surface with r >R is shown.

E = L g (spherical shell, field at r = R)| 1 g

dare, r? E = 5 (spherical distribution, field at r = R).

47]'8{] r

E=0 (spherical shell, field at r < R),

q .
E = (—)f uniform charge, field at r = R).
AR’ ( . )



