
Chapter 23 

Gauss’ Law 



Gauss’ law relates the electric fields at points on a 

(closed) Gaussian surface to the net charge 

enclosed by that surface. 

 

23.1 What is Physics?: 

 

Gauss’ law considers a hypothetical (imaginary) closed 

surface enclosing the charge distribution. 

 

This Gaussian surface, as it is called, can have any 

shape, but the shape that minimizes our calculations of 

the electric field is one that mimics the symmetry of the 

charge distribution. 

 



23.2: Flux 

Fig. 23-2 (a) A uniform airstream of velocity is perpendicular to the plane of a square loop of area A.(b) 

The component of perpendicular to the plane of the loop is v cos q,where q is the angle between v 

and a normal to the plane. (c) The area vector A is perpendicular to the plane of the loop and makes an 

angle q with v. (d) The velocity field intercepted by the area of the loop. The rate of volume flow 

through the loop is F= (v cos q)A. 

 

This rate of flow through an area is an example of a flux—a volume flux in this situation. 



23.3: Flux of an Electric Field 

Fig. 23-3 A Gaussian surface of arbitrary shape 

immersed in an electric field. The surface is divided into 

small squares of area DA. The electric field vectors E and 

the area vectors DA for three representative squares, 

marked 1, 2, and 3, are shown. 

The exact definition of the flux of the electric field 

through a closed surface is found by allowing the area 

of the squares shown in Fig. 23-3 to become smaller 

and smaller, approaching a differential limit dA. The 

area vectors then approach a differential limit dA.The 

sum of Eq. 23-3 then becomes an integral: 

The electric flux  through a Gaussian surface is proportional to the net number of 

electric field lines passing through that surface. 



Example, Flux through a closed cylinder, uniform field: 



Example, Flux through a closed cube,  

Non-uniform field: 
Right face: An area vector A is always 

perpendicular to its surface and always points away 

from the interior of a Gaussian surface. Thus, the 

vector for any area element dA (small section) on 

the right face of the cube must point in the positive 

direction of the x axis. The most convenient way to 

express the vector is in unit-vector notation, 

Although x is certainly a variable as we move left to right across the figure, because the right face is 

perpendicular to the x axis, every point on the face has the same x coordinate. (The y and z coordinates do 

not matter in our integral.) Thus, we have 



Example, Flux through a closed cube,  

Non-uniform field: 



23.4 Gauss’ Law: 

Gauss’ law relates the net flux  of an electric 

field through a closed surface (a Gaussian 

surface) to the net charge qenc that is enclosed 

by that surface.  

The net charge qenc is the algebraic sum of all the 

enclosed positive and negative charges, and it can be 

positive, negative, or zero.  

 

If qenc is positive, the net flux is outward; if qenc is 

negative, the net flux is inward. 



Example, Relating the net enclosed charge and the net flux: 



Example, Enclosed charge in a  

non-uniform field: 



23.5 Gauss’ Law and Coulomb’s Law: 

Figure 23-8 shows a positive point charge q, around 

which a concentric spherical Gaussian surface of radius 

r is drawn. Divide this surface into differential areas dA. 

  

The area vector dA at any point is perpendicular 

to the surface and directed outward from the interior.  

 

From the symmetry of the situation, at any point the 

electric field, E, is also perpendicular to the surface and 

directed outward from the interior.  

 

Thus, since the angle q between E and dA is zero, we 

can rewrite Gauss’ law as 

This is exactly what Coulomb’s law yielded. 



23.6 A Charged Isolated Conductor: 

If an excess charge is placed on an isolated conductor, that 

amount of charge will move entirely to the surface of the 

conductor. None of the excess charge will be found within 

the body of the conductor. 

Figure 23-9a shows, in cross section, an isolated lump of 

copper hanging from an insulating thread and having an 

excess charge q. The Gaussian surface is placed just inside 

the actual surface of the conductor. The electric field inside 

this conductor must be zero. Since the excess charge is not 

inside the Gaussian surface, it must be outside that surface, 

which means it must lie on the actual surface of the 

conductor. 

 

Figure 23-9b shows the same hanging conductor, but now 

with a cavity that is totally within the conductor. A Gaussian 

surface is drawn surrounding the cavity, close to its surface 

but inside the conducting body. Inside the conductor, there 

can be no flux through this new Gaussian surface. 

Therefore, there is no net charge on the cavity walls; all 

the excess charge remains on the outer surface of the 

conductor. 



23.6 A Charged Isolated Conductor; The External Electric Field: 

The electric field just outside the surface of a conductor is easy to 

determine using Gauss’ law.  

Consider a section of the surface that is small enough to neglect any 

curvature and thus the section is considered flat. 

A tiny cylindrical Gaussian surface is embedded in the section as in 

Fig. 23-10: One end cap is fully inside the conductor, the other is 

fully outside, and the cylinder is perpendicular to the conductor’s 

surface. 

The electric field E at and just outside the conductor’s surface must 

also be perpendicular to that surface. 

We assume that the cap area A is small enough that the field 

magnitude E is constant over the cap. Then the flux through the cap 

is EA, and that is the net flux F through the Gaussian surface. 

The charge qenc enclosed by the Gaussian surface lies on the 

conductor’s surface in an area A. If s is the charge per unit area, 

then qenc is equal to sA. 



Example, Spherical Metal Shell,  

Electric Field, and Enclosed Charge: 



23.7 Applying Gauss’ Law: Cylindrical Symmetry: 

Figure 23-12 shows a section of an infinitely long cylindrical 

plastic rod with a uniform positive linear charge density l. 

Let us find an expression for the magnitude of the electric 

field E at a distance r from the axis of the rod. 

 

At every point on the cylindrical part of the Gaussian surface, 

must have the same magnitude E and (for a positively 

charged rod) must be directed radially outward. 

 

The flux of E through this cylindrical surface is 



Example, Gauss’ Law and an  

upward streamer in a lightning storm: 



23.8 Applying Gauss’ Law: Planar Symmetry 

Non-conducting Sheet: 

Figure 23-15 shows a portion of a thin, infinite, nonconducting 

sheet with a uniform (positive) surface charge density s. A 

sheet of thin plastic wrap, uniformly charged on one side, can 

serve as a simple model.  

We need to find the electric field a distance r in front of the 

sheet. 

A useful Gaussian surface is a closed cylinder with end caps of 

area A, arranged to pierce the sheet perpendicularly as shown. 

From symmetry, E must be perpendicular to the sheet and 

hence to the end caps.  

Since the charge is positive, E is directed away from the sheet. 

There is no flux through this portion of the Gaussian surface. 

Thus E.dA is simply EdA, and  

 

 

 

 

Here sA is the charge enclosed by the Gaussian surface. 

 

Therefore,  



23.8 Applying Gauss’ Law: Planar Symmetry 

Two Conducting Plates: 

Figure 23-16a shows a cross section of a thin, infinite conducting 

plate with excess positive charge. The plate is thin and very large, 

and essentially all the excess charge is on the two large faces of the 

plate. 

If there is no external electric field to force the positive charge into 

some particular distribution, it will spread out on the two faces with a 

uniform surface charge density of magnitude s1.  

Just outside the plate this charge sets up an electric field of 

magnitude E =s1/e0.   

Figure 23-16b shows an identical plate with excess negative charge 

having the same magnitude of surface charge density. Now the 

electric field is directed toward the plate. 

 

If we arrange for the plates of Figs. 23-16a and b to be close to each 

other and parallel (Fig. 23-16c), the excess charge on one plate 

attracts the excess charge on the other plate, and all the excess charge 

moves onto the inner faces of the plates as in Fig. 23-16c. 

 

With twice as much charge now on each inner face, the new surface 

charge density, s, on each inner face is twice s1.Thus, the electric 

field at any point between the plates has the magnitude 



Example, Electric Field: 



23.9 Applying Gauss’ Law: Spherical Symmetry: 

A shell of uniform charge attracts or repels a charged particle that is outside the shell as 

if all the shell’s charge were concentrated at the center of the shell. 
 

 
If a charged particle is located inside a shell of uniform charge, there is no electrostatic 

force on the particle from the shell. 

Fig. 23-19 The dots represent a 

spherically symmetric distribution of 

charge of radius R, whose volume 

charge density r is a function only of 

distance from the center. The charged 

object is not a conductor, and therefore 

the charge is assumed to be fixed in 

position. A concentric spherical 

Gaussian surface with r >R is shown. 


