
Chapter 25 

Capacitance 



25.2: Capacitance: 



25.2: Capacitance: 

When a capacitor is charged, its plates have charges of equal magnitudes but opposite signs: q+ and 

q-. However, we refer to the charge of a capacitor as being q, the absolute value of these charges on 

the plates. 

 

The charge q and the potential difference V for a capacitor are proportional to each other: 

 

 

The proportionality constant C is called the capacitance of the capacitor. Its value depends only on 

the geometry of the plates and not on their charge or potential difference. 

 

The SI unit is called the farad (F): 1 farad  (1 F)= 1 coulomb per volt =1 C/V. 



25.2: Capacitance: Charging a Capacitor: 

The circuit shown is incomplete because switch S is open; that is, the switch does not electrically 

connect the wires attached to it. When the switch is closed, electrically connecting those wires, the 

circuit is complete and charge can then flow through the switch and the wires. 

 

As the plates become oppositely charged, that potential difference increases until it equals the potential 

difference V between the terminals of the battery. With the electric field zero, there is no further drive 

of electrons. The capacitor is then said to be fully charged, with a potential difference V and charge q. 



25.3: Calculating the Capacitance: 

To relate the electric field E  between the plates of a 

capacitor to the charge q on either plate, we use Gauss’ law: 

 

 

 

Here q is the charge enclosed by a Gaussian surface and 

  is the net electric flux through that surface. In 

our special case in the figure,  

 

 

in which A is the area of that part of the Gaussian surface 

through which there is a flux. 

 

the potential difference between the plates of a capacitor is 

related to the field E by 

 

 

 

If V is the difference Vf -Vi , 

 

 

 

 

Here,  



25.3: Calculating the Capacitance, A Cylindrical Capacitor : 

As a Gaussian surface, we choose a cylinder of length L 

and radius r, closed by end caps and placed as is shown. It 

is coaxial with the cylinders and encloses the central 

cylinder and thus also the charge q on that cylinder. 



25.3: Calculating the Capacitance, A Spherical Capacitor: 



We can assign a capacitance to a single isolated spherical conductor of radius R by assuming 

that the “missing plate” is a conducting sphere of infinite radius. 

 

The field lines that leave the surface of a positively charged isolated conductor must end 

somewhere; the walls of the room in which the conductor is housed can serve effectively as 

our sphere of infinite radius. 

 

To find the capacitance of the conductor, we first rewrite the capacitance as: 

 

 

 

 

Now letting b→∞, and substituting R for a,  

25.3: Calculating the Capacitance, An Isolated Sphere: 



Example, Charging the Plates in a Parallel-Plate Capacitor: 



25.4: Capacitors in Parallel and in Series: 

When a potential difference V is applied across 

several capacitors connected in parallel, that potential 

difference V is applied across each capacitor. The total 

charge q stored on the capacitors is the sum of the 

charges stored on all the capacitors. 

 

Capacitors connected in parallel can be replaced with 

an equivalent capacitor that has the same total charge q 

and the same potential difference V as the actual 

capacitors. 



25.4: Capacitors in Parallel and in Series: 

When a potential difference V is applied across 

several capacitors connected in series, the capacitors 

have identical charge q. The sum of the potential 

differences across all the capacitors is equal to the 

applied potential difference V. 

 

Capacitors that are connected in series can be 

replaced with an equivalent capacitor that has the same 

charge q and the same total potential difference V as the 

actual series capacitors. 



Example, Capacitors in Parallel and in Series: 



Example, Capacitors in Parallel and in Series: 



Example, One Capacitor Charging up Another Capacitor: 



25.5: Energy Stored in an Electric Field: 

Suppose that, at a given instant, a charge q’ has been transferred from one plate of a 

capacitor to the other. The potential difference V’ between the plates at that instant will be 

q’/C. If an extra increment of charge dq’ is then transferred, the increment of work 

required will be, 

 

 

The work required to bring the total capacitor charge up to a final value q is 

 

 

 

This work is stored as potential energy U in the capacitor, so that, 

 

 

 

 

This can also be expressed as: 



In a parallel-plate capacitor, neglecting fringing, the electric field has the same value at all 

points between the plates. Thus, the energy density u—that is, the potential energy per 

unit volume between the plates—should also be uniform. 

 

We can find u by dividing the total potential energy by the volume Ad of the space 

between the plates. 

 

 

 

But since(C =e 0A/d), this result becomes 

 

 

 

However, (E=-DV/Ds), V/d equals the electric field magnitude E. Therefore. 

 

25.5: Energy Stored in an Electric Field:  Energy Density 



Example, Potential Energy and Energy Density of an Electric Field: 



25.6: Capacitor with a Dielectric: 

A dielectric, is an insulating material such as mineral oil 

or plastic, and is characterized by a numerical factor k, 

called the dielectric constant of the material. 

 

Some dielectrics, such as strontium titanate, can increase 

the capacitance by more than two orders of magnitude. 

 

The introduction of a dielectric also limits the potential 

difference that can be applied between the plates to a 

certain value Vmax, called the breakdown potential. 

Every dielectric material has a characteristic dielectric 

strength, which is the maximum value of the electric field 

that it can tolerate without breakdown. 



Example, Work and Energy when a Dielectric is inserted inside a Capacitor: 



25.7: Dielectrics, an Atomic View: 

1. Polar dielectrics. The molecules of some dielectrics, like water, have permanent electric 

dipole moments. In such materials (called polar dielectrics), the electric dipoles tend to 

line up with an external electric field as in Fig. 25-14. Since the molecules are 

continuously jostling each other as a result of their random thermal motion, this 

alignment is not complete, but it becomes more complete as the magnitude of the applied 

field is increased (or as the temperature, and thus the jostling, are decreased).The 

alignment of the electric dipoles produces an electric field that is directed opposite the 

applied field and is smaller in magnitude. 

 

 

2. Nonpolar dielectrics. Regardless of whether they have permanent electric dipole 

moments, molecules acquire dipole moments by induction when placed in an external 

electric field. This occurs because the external field tends to “stretch” the molecules, 

slightly separating the centers of negative and positive charge. 



25.8: Dielectrics and Gauss’ Law: 

For the situation of Fig. 25-16a, without a dielectric, the electric field between the plates can be 

found using Gauss’s Law. We enclose the charge q on the top plate with a Gaussian surface and then 

apply Gauss’ law. If E0 represents the magnitude of the field, we have 

 

 

In Fig. 25-16b, with the dielectric in place, we can find the electric field between the plates (and 

within the dielectric) by using the same Gaussian surface. Now the surface encloses two types of 

charge: It still encloses charge +q on the top plate, but it now also encloses the induced charge –q’ on 

the top face of the dielectric. The charge on the conducting plate is said to be free charge because it 

can move if we change the electric potential of the plate; the induced charge on the surface of the 

dielectric is not free charge because it  cannot move from that surface. 

 

 

 

The effect of the dielectric is to weaken the original field E0 by a factor of k: 

 

Since  



25.8: Dielectrics and Gauss’ Law: 

1. The flux integral now involves kE, not just E. (The vector is sometimes called the 

electric displacement, D. The above equation can be written as:  

 

2. The charge q enclosed by the Gaussian surface is now taken to be the free charge 

only. The induced surface charge is deliberately ignored on the right side of the 

above equation, having been taken fully into account by introducing the dielectric 

constant k on the left side. 

 

3. e0 gets replaced by ke0. We keep k inside the integral of the above equation to allow 

for cases in which k is not constant over the entire Gaussian surface. 



Example, Dielectric Partially Filling a Gap in a Capacitor: 



Example, Dielectric Partially Filling a Gap in a Capacitor, cont.: 


