Chapter 25

Capacitance




25.2: Capacitance:

Fig. 25-2 Two conductors, isolated
electrically from each other and from
their surroundings, form a capacitor.
When the capacitor is charged, the
charges on the conductors, or plates as
they are called, have the same magni-
tude g but opposite signs.

( Paul Silvermann/Fundamental
Photographs)



25.2: Capacitance:
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Fig. 25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by
a distance d. The charges on the facing plate surfaces have the same magnitude g but
opposite signs. (b) As the field lines show, the electric field due to the charged plates is
uniform in the central region between the plates. The field is not uniform at the edges of
the plates, as indicated by the “fringing” of the field lines there.

When a capacitor is charged, its plates have charges of equal magnitudes but opposite signs: g+ and
g-. However, we refer to the charge of a capacitor as being g, the absolute value of these charges on
the plates.

The charge g and the potential difference V for a capacitor are proportional to each other:

The proportionality constant C is called the capacitance of the capacitor. Its value depends only on
the geometry of the plates and not on their charge or potential difference.

The SI unit is called the farad (F): 1 farad (1 F)=1 coulomb per volt =1 C/V.



25.2: Capacitance: Charging a Capacitor:
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Fig. 25-4 (a) Battery B,switch S, and plates i and / of capacitor C, connected in a cir-
cuit. (b) A schematic diagram with the circuit elements represented by their symbols.

The circuit shown is incomplete because switch S is open; that is, the switch does not electrically
connect the wires attached to it. When the switch is closed, electrically connecting those wires, the
circuit is complete and charge can then flow through the switch and the wires.

As the plates become oppositely charged, that potential difference increases until it equals the potential
difference V between the terminals of the battery. With the electric field zero, there is no further drive
of electrons. The capacitor is then said to be fully charged, with a potential difference V and charge q.



25.3: Calculating the Capacitance:

To relate the electric field E between the plates of a We use Gauss' law to relate

capacitor to the charge g on either plate, we use Gauss’ law: q and £. Then we integrate the
E to get the potential difference.

£o Eﬁ E-dA=gq. R e e S S T e e e
AR RN
Here q is the charge enclosed by a Gaussian surface and dAT VY YUYYY Yy gf:?jf:‘;“
¢ E-dA isthe net electric flux through that surface. In == LIl S~ ‘
our special case in the figure, S
q = E.‘[}EA integration
Fig. 25-5 A charged parallel-plate ca-
in which A is the area of that part of the Gaussian surface pacitor. A Gaussian surface encloses the
through which there is a flux. charge on the positive plate. The integra-

tion of Eq.25-6 is taken along a path ex-
tending directly from the negative plate to

the potential difference between the plates of a capacitor is i
the positive plate.

related to the field E by

f—)
Vi—=Vi=—| E-ds

T d
If V is the difference V; -V, , V= J Eds = EJ ds = FEd.
— 0
@ L gA ‘
C = ; (parallel-plate capacitor).
(

Here, gp = 8.85 X 10712 C¥N -m?>.



25.3: Calculating the Capacitance, A Cylindrical Capacitor :

As a Gaussian surface, we choose a cylinder of length L
and radius r, closed by end caps and placed as is shown. It

Is coaxial with the cylinders and encloses the central
cylinder and thus also the charge g on that cylinder.

q = eoEA = g, EQ27rLL),
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(cylindrical capacitor).

In(b/a)

Total charge +q

Total charge —¢

Path of
integration

surface

Fig. 25-6 A cross section of a long cylin-
drical capacitor, showing a cylindrical
Gaussian surface of radius r (that encloses
the positive plate) and the radial path of in-
tegration along which Eq. 25-6 is to be ap-
plied. This figure also serves to illustrate a
spherical capacitor in a cross section
through its center.



25.3: Calculating the Capacitance, A Spherical Capacitor:
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Fig. 25-6 A cross section of a long cylin-
drical capacitor, showing a cylindrical
Gaussian surface of radius r (that encloses
the positive plate) and the radial path of in-
tegration along which Eq.25-6 is to be ap-
plied. This figure also serves to illustrate a
spherical capacitor in a cross section
through its center.

(spherical capacitor).




25.3: Calculating the Capacitance, An Isolated Sphere:

We can assign a capacitance to a single isolated spherical conductor of radius R by assuming
that the “missing plate” is a conducting sphere of infinite radius.

The field lines that leave the surface of a positively charged isolated conductor must end
somewhere; the walls of the room in which the conductor is housed can serve effectively as
our sphere of infinite radius.

To find the capacitance of the conductor, we first rewrite the capacitance as:

Now letting b—o0, and substituting R for a,



Example, Charging the Plates in a Parallel-Plate Capacitor:

In Fig. 25-7a, switch S is closed to connect the uncharged ca-
pacitor of capacitance C = 0.25 uF to the battery of potential
difference V' = 12 V. The lower capacitor plate has thickness
L = 0.50 cm and face area A = 2.0 X 107*m?, and it consists
of copper, in which the density of conduction electrons is n =
8.49 X 1078 electrons/m®. From what depth d within the plate
(Fig. 25-7b) must electrons move to the plate face as the ca-
pacitor becomes charged?

KEY IDEA

The charge collected on the plate is related to the capaci-
tance and the potential difference across the capacitor by
Eq.25-1 (g = CV).

Calculations: Because the lower plate is connected to the
negative terminal of the battery, conduction electrons move
up to the face of the plate. From Eq. 25-1, the total charge

1, —
L1 T

(a) (&)
Fig. 25-7 (a) A battery and capacitor circuit. (b) The
lower capacitor plate.

magnitude that collects there is
qg=CV=(025x10"°F)(12V)
=30X107°C.

Dividing this result by e gives us the number N of conduc-
tion electrons that come up to the face:

o4 _ 30x10°°C
e 1602x10°°C

= 1.873 X 108 electrons.

These electrons come from a volume that is the product of the
face area A and the depth d we seek. Thus, from the density of
conduction electrons (number per volume), we can write

_N
n Ad )
or
= N _ 1.873 X 10 electrons

An (20 X 107*m?) (8.49 X 10® electrons/m?)

=1.1x1072m = 1.1 pm. (Answer)

In common speech, we would say that the battery charges
the capacitor by supplying the charged particles. But what
the battery really does is set up an electric field in the wires
and plate such that electrons very close to the plate face
move up to the negative face.



25.4: Capacitors in Parallel and in Series:

“*When a potential difference V is applied across

several capacitors connected in parallel, that potential ,~Terminal
difference V is applied across each capacitor. The total _l_ . .
. . n 93 92 4
charge g stored on the capacitors is the sum of the BV (v 1v v
charges stored on all the capacitors. -[ B I I
(a) Terminal
s Capacitors connected in parallel can be replaced with Parallel capacitors and
an equivalent capacitor that has the same total charge g their equivalent have
and the same potential difference V as the actual the same V ("par-V’).
capacitors. J_
tq
+
. . B==V
g, =C,V, qg,=GCV, and ¢g;= GV, ]- =4 Ceq
ﬂ ()
q=q,+ q,+ q; = (Cl + C, + CB)V* Fig. 25-8 (a) Three capacitors connected
_ ) in parallel to battery B. The battery main-
q ﬂ tains potential difference V across its termi-
Ceq =— =0+ G + G, nals and thus across each capacitor. (b) The
vV _ equivalent capacitor, with capacitance Ceg.

replaces the parallel combination.

(n capacitors in parallel).




25.4: Capacitors in Parallel and in Series:

“*When a potential difference V is applied across
several capacitors connected in series, the capacitors
have identical charge g. The sum of the potential
differences across all the capacitors is equal to the

applied potential difference V.

+»»Capacitors that are connected in series can be
replaced with an equivalent capacitor that has the same
charge g and the same total potential difference V as the

actual series capacitors.
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Series capacitors and
their equivalent have
the same g (“seri-q”).

(a) Three capacitors con-
nected in series to battery B. The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Cq. replaces the series
combination.



Example, Capacitors in Parallel and in Series:

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential

difference V'is applied. Assume

C, =120 uF, C, =530 uF,

We first reduce the
circuit to a single

capacitor.
A
o -

Ci = C, =
12.0 uF 5.30 uF
V

15
=
4.50 ;uFl

Fig. 25-10 (a)

and C; =450 uF.

The equivalent of
parallel capacitors
is larger.

.

Cp,=C,+ C, =120 uF + 530 uF = 17.3 uF.

1

C'l 23

The equivalent of
series capacitors

Is smaller.
'-3?
Vv Cigg=
3.57 uF
[
(c)

1 1
+

Next, we work
backwards to the
desired capacitor.

(25
i
<7
B
q
o
s
-

o=

1
+ = 0.280 uF 1,

(Answer)



Example, Capacitors in Parallel and in Series:

(b) The potential difference applied to the input terminals
in Fig. 25-10a is V' = 12.5 V. What is the charge on C,?

We first reduce the

circuit to a single
capacitor.

C, =
5.80 uF

+B
Cs =
4.50 p:Fl

Fig. 25-

Series capacitors and
their equivalent have
the same g (“seri-q").

10 (g

125V

q12 =
44.6 uC

CIJ_
17.3 uF
g3 =
44.6 uC
Cs =
4.50 uF

(f)

12.5

Next, we work

backwards to the
desired capacitor.

Applying g =

i3 = Ci3V =

yields the charge.

(8 ——— I ———
q123 =
44.6 uC
BV 125V
Cigs = Vigs = Ciog =
357 uF | 125V 3.57 uF
— (—

Applying V= g/C yields
the potential difference.

qi12 =
44.6 uC

(e)

S

§

cVv @
44.6 pC
V,=-12 - 228 _ 53V,
Clz 173 P‘,F
@ V=V, =258V,
%
B @ a1 = GV = (12.0 uF)(2.58 V)
= 31.0 unC.
Parallel capacitors and
their equivalent have Applying g=CV
the same V (“par-V"). yields the charge.
= 92 =
v - v 31.0 uC 13.7 uC
1= Co=—u Vo= Ci=TVi= GCo=—Vp-=
o R 12.0 uF | 258V 5.30 uF | 258V
93 = 93 =
44.6 uC 125V 44.6 uC
Cg=mmVs = Cy="T"V; =
4.50 pF|9.92V ) 4.50 uF|9.92V

(3.57 uF)(12.5 V)

= 44.6 uC.

d12 = G123 = 44.0 ,‘LC*




Example, One Capacitor Charging up Another Capacitor:

Capacitor 1, with C; = 3.55 uF, is charged to a potential
difference V, = 6.30 V. using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C, = 8.95 uF. When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

After the switch is closed,
charge is transferred until
the potential differences
match.

Fig. 25-11 A potential differ- S
ence Vs applied to capacitor 1

and the charging battery is re-

moved. Switch Sisthenclosedso %
that the charge on capacitor 1 is
shared with capacitor 2.

G Co

Calculations: Initially, when capacitor 1 is connected to
the batterv. the charoe it acauires is. from Ea. 25-1.
qo=C,V,= (355X 107°F) (6.30V)

=22.365 X 107°C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

Vi=V,

(equilibrium).

From Eq. 25-1, we can rewrite this as

4 _ B

G G,

Because the total charge cannot magically change, the total
after the transfer must be

(equilibrium).

q1+ q2=qo (charge conservation);
thus 42= qo — q1-
We can now rewrite the second equilibrium equation as
v _ 90— 91
G G

Solving this for ¢; and substituting given data, we find
q,= 6.35 uC.

The rest of the initial charge (g, = 22.365 uC) must be on
capacitor 2:

(Answer)

q,= 16.0 uC. (Answer)



25.5: Energy Stored in an Electric Field:
-y

"W The potential energy of a charged capacitor may be viewed as being stored in the
electric field between its plates.

Suppose that, at a given instant, a charge ¢ "has been transferred from one plate of a
capacitor to the other. The potential difference 7’ between the plates at that instant will be
g /C. If an extra increment of charge dg’ is then transferred, the increment of work

required will be, :

AW = V' dg' ==

dq’.

The work required to bring the total capacitor charge up to a final value q is
2

W—de—ir dg' = L
B e Yok

This work is stored as potential energy U in the capacitor, so that,

U=—+ (potential energy).

- 1 .
This can also be expressed as: U=3CV? (potential energy).



25.5: Energy Stored in an Electric Field: Energy Density

In a parallel-plate capacitor, neglecting fringing, the electric field has the same value at all
points between the plates. Thus, the energy density u—that is, the potential energy per
unit volume between the plates—should also be uniform.

We can find u by dividing the total potential energy by the volume Ad of the space

between the plates.

U Ve
“TTAd T 24d°

V 2
But since(C =& ,A/d), this result becomes =g, (—) .

However, (E=-4V/4s), V/d equals the electric field magnitude E. Therefore.

H= %E{]EE (energy density).




Example, Potential Energy and Energy Density of an Electric Field:

An isolated conducting sphere whose radius R is 6.85 cm
has a charge ¢ = 1.25 nC,

(a) How much potential energy is stored in the electric field
of this charged conductor?

KEY IDEAS

(1) An isolated sphere has capacitance given by Eq. 25-18
(C = 4megR). (2) The energy U stored in a capacitor depends
on the capacitor’s charge g and capacitance C according to
Eq.25-21 (U = ¢*12C).

Calculation: Substituting C = 47e,R into Eq. 25-21 gives us

& 2

¢ _ q
2C  8meR

- (125 X 107 C)?
~ (8m)(8.85 X 1072 F/m)(0.0685 m)

= 1.03 X 1077J = 103 nJ.

U:

(Answer)

(b) What is the energy density at the surface of the sphere?

KEY IDEA

The density « of the energy stored in an electric field depends
on the magnitude E of the field, according to Eq. 25-25
(u = %ngz).

Calculations: Here we must first find £ at the surface of
the sphere, as given by Eq. 23-15:

I q

E=—1
dme, R?

The energy density is then

q2

327, R
(125 X 1079 C)?2
(327%)(8.85 X 1072 C2/N-m?)(0.0685 m)*
= 2.54 X 1075 J/m? = 25.4 pJ/m?.

_1 2
u=3gE° =

(Answer)



25.6: Capacitor with a Dielectric:
[
"W In aregion completely filled by a dielectric material of dielectric constant «, all

electrostatic equations containing the permittivity constant gy are to be modified by
replacing g, with ke,

Table 25-1

A dielectric, is an insulating material such as mineral 0il  gome properties of Dielectrics:
or plastic, and is characterized by a numerical factor «,

Dielectric Dielectric

called the dielectric constant of the material. Constant  Strength
Material K (kV/mm)
Some dielectrics, such as strontium titanate, can increase ~ Air (1 atm) 1.00054 3
. . Polystyrene 2.6 24
the capacitance by more than two orders of magnitude. Paper 25 6
Transformer
. . . . .. . il 4.5
The introduction of a dielectric also limits the potential ~ pyey e "
difference that can be applied between the plates to a Eubylmica (f
. - orcelaln ..
certain value Vmax, called the breakdown potential. Silicon B
Every dielectric material has a characteristic dielectric gﬁfma?ium 10
- . - - . 1ano i
strength, which is the maximum value of the electric field  waer 20°0) 504
that it can tolerate without breakdown. }r"_’fter (25°C) 785
1tania
ceramic 130
Strontium
titanate 310 8

For a vacuum, k = U[]it}’.

"Measured at room temperature, except for the water.



Example, Work and Energy when a Dielectric is inserted inside a Capacitor:

A parallel-plate capacitor whose capacitance C is 13.5 pF is
charged by a battery to a potential difference V =125V
between its plates. The charging battery is now discon-
nected, and a porcelain slab (k = 6.50) is slipped between
the plates.

(a) What is the potential energy of the capacitor before the
slab is inserted?

KEY IDEA

We can relate the potential energy U, of the capacitor to the
capacitance C and either the potential V' (with Eq. 25-22) or
the charge ¢ (with Eq.25-21):

2

=5V =

Calculation: Because we are given the initial potential
V (= 12.5 V), we use Eq. 25-22 to find the initial stored
energy:
U =3CV? =1(13.5 X 10 2 F)(12.5 V)
= 1.055 X 107J = 1055 pJ = 1100 pJ. (Answer)

(b) What is the potential energy of the capacitor-slab device
after the slab is inserted?

KEY IDEA

Because the battery has been disconnected, the charge on
the capacitor cannot change when the dielectric is inserted.
However, the potential does change.

Calculations: Thus, we must now use Eq.25-21 to write the
final potential energy U, but now that the slab is within the
capacitor, the capacitance is kC. We then have

¢ U 1055p]

1

Y

2kC «k 6.50
= 162 pJ =~ 160 pJ.
When the slab is introduced, the potential energy decreases
by a factor of k.

The “missing” energy, in principle, would be apparent to
the person who introduced the slab. The capacitor would ex-
ert a tiny tug on the slab and would do work on it, in amount

W= U, — U;= (1055 — 162) pJ = 893 pl.

(Answer)

If the slab were allowed to slide between the plates with no
restraint and if there were no friction, the slab would oscillate
back and forth between the plates with a (constant) mechani-
cal energy of 893 pJ, and this system energy would transfer
back and forth between kinetic energy of the moving slab and
potential energy stored in the electric field.



25.7: Dielectrics, an Atomic View:
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(a) (b)

1. Polar dielectrics. The molecules of some dielectrics, like water, have permanent electric

Fig. 25-14 (a) Molecules
with a permanent electric dipole
moment, showing their random
orientation in the absence of an
external electric field. (b) An
electric field is applied, produc-
ing partial alignment of the
dipoles. Thermal agitation pre-
vents complete alignment.

dipole moments. In such materials (called polar dielectrics), the electric dipoles tend to
line up with an external electric field as in Fig. 25-14. Since the molecules are
continuously jostling each other as a result of their random thermal motion, this

alignment is not complete, but it becomes more complete as the magnitude of the applied

field is increased (or as the temperature, and thus the jostling, are decreased).The
alignment of the electric dipoles produces an electric field that is directed opposite the

applied field and is smaller in magnitude.

2. Nonpolar dielectrics. Regardless of whether they have permanent electric dipole
moments, molecules acquire dipole moments by induction when placed in an external
electric field. This occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.



25.8: Dielectrics and Gauss’ Law:

Fig. 25-16 Gaussian surface Gaussian surface g
e . /
A parallel-plate T e FFFFFFF A F
capacitor (a) with- \\ I
out and (b) with a di- =N vE —1
; . I‘-{]. q
electric slab mserted. ~ K f
The charge g on the /1 + + 4+ + 4+ 71
platesisassumedto | = el 2 \_ 3
be the same 1n both ——g
cases. (a) ()

For the situation of Fig. 25-16a, without a dielectric, the electric field between the plates can be
found using Gauss’s Law. We enclose the charge g on the top plate with a Gaussian surface and then
apply Gauss’ law. If E,, represents the magnitude of the field, we have

. q
£y E * HIA = 80514 = (. = EU - SE).A -

In Fig. 25-16Db, with the dielectric in place, we can find the electric field between the plates (and
within the dielectric) by using the same Gaussian surface. Now the surface encloses two types of
charge: It still encloses charge +q on the top plate, but it now also encloses the induced charge —q’on
the top face of the dielectric. The charge on the conducting plate is said to be free charge because it
can move if we change the electric potential of the plate; the induced charge on the surface of the
dielectric is not free charge because it cannot move from that surface.

o _49—-4q
8{]% E . (T’A = SUEA =dq — (fr.. = E - S()'A )
: . . _ E, -
The effect of the dielectric is to weaken the original field Ej by a factor of x2  E = K{ = K;A :
0

cF_qr:i. =
K

Since Et}fﬁ kE -dA = q (Gauss’ law with dielectric).




25.8: Dielectrics and Gauss’ Law:

1. The flux integral now involves &, not just E. (The vector is sometimes called the
electric displacement, D. The above equation can be writtenas: ¢ D +dA = q.

2. The charge g enclosed by the Gaussian surface is now taken to be the free charge
only. The induced surface charge is deliberately ignored on the right side of the
above equation, having been taken fully into account by introducing the dielectric
constant k on the left side.

3. gy getsreplaced by xg,. We keep « inside the integral of the above equation to allow
for cases in which « is not constant over the entire Gaussian surface.



Example, Dielectric Partially Filling a Gap in a Capacitor:

Figure 25-17 shows a parallel-plate capacitor of plate area
A and plate separation d. A potential difference V/, is applied
between the plates by connecting a battery between them. The
battery is then disconnected, and a dielectric slab of thickness b
and dielectric constant k is placed between the plates as shown.
Assume A = 115ecm? d = 1.24 cm, V, = 85.5V, b = 0.780 cm,
and k = 2.61.

g

Gaussian /
Fig. 25-17 Surfacel\—‘ e ik }
A parallel-plate ca- ., A )
pacitor containing E bod
a dielectric slab +g——+ + K+ 4+ |
that only partially
fills the space be-  Gaussian—" —+ =~ — T

tween the plates. surface I1

(a) What is the capacitance C;, before the dielectric slab is
inserted?

Calculation: From Eq. 25-9 we have
gA (885 X 1072 F/m)(115 X 107 m?)

©=7 124 % 10 2m
=821 X 1072 F = 8.21 pF. (Answer)
(b) What free charge appears on the plates?
Calculation: From Eq.25-1,
qg = GV, = (821 X 1072 F)(85.5V)
= 7.02 X 1071°C = 702 pC. (Answer)

(c) What is the electric field E; in the gaps between the
plates and the dielectric slab?

Calculations: That surface passes through the gap, and so it
encloses only the free charge on the upper capacitor plate.
Electric field pierces only the bottom of the Gaussian surface.
Because there the area vector dA and the field vector Eg are
both directed downward, the dot product in Eq. 25-36 becomes

E,-dA = E,dA cos (° = E, dA.
Equation 25-36 then becomes

gokky % dA = q.

The integration now simply gives the surface area A of the
plate. Thus, we obtain
SoKEDA =4dq,

q
SoKA i

or Ey =

We must put k = 1 here because Gaussian surface I does
not pass through the dielectric. Thus, we have

q 7.02 X 107°C
gokA  (8.85 X 107 2F/m)(1)(115 X 10~*m?)
= 6900 V/m = 6.90 kV/m.

Note that the value of E; does not change when the slab is
introduced because the amount of charge enclosed by
Gaussian surface I in Fig. 25-17 does not change.

EUZ

(Answer)



Example, Dielectric Partially Filling a Gap in a Capacitor, cont.:

al
Gaussian

Fig. 25-17 surface I e ——
A parallel-plate ca- . A )
pacitor containing E bod
a dielectric slab +g——+ + K+ 4+ |
that only partially
fills the space be-  Gaussian—" — =~ — — — T
tween the plates. surface II \ —q

(d) What is the electric field E; in the dielectric slab?

Calculations: That surface encloses free charge —¢q and in-
duced charge +¢’, but we ignore the latter when we use Eq.
25-36. We find

sotj};xi’ladﬁ — —epkE,A = —q. (25-37)

The first minus sign in this equation comes from the dot
product E,-dA along the top of the Gaussian surface be-
cause now the field vector E is directed downward and the
area vector dA (which, as always, points outward from the
interior of a closed Gaussian surface) is directed upward.
With 180” between the vectors, the dot product is negative.
Now x = 2.61.Thus, Eq. 25-37 gives us

F—_9 _ Ey  690kV/m
D ogkA k 2.61
= 2.64 kKV/m. (Answer)

(e) What is the potential difference V between the plates
after the slab has been introduced?

Calculation: Within the dielectric, the path length is b and
the electric field is E;. Within the two gaps above and below
the dielectric, the total path length is d — b and the electric
field is E,,. Equation 25-6 then yields

+
sz Eds = E(d — b) + Eb

= (6900 V/m)(0.0124 m — 0.00780 m)

+ (2640 V/m)(0.00780 m)
=523 V. (Answer)
This is less than the original potential difference of 85.5 V.

(f) What is the capacitance with the slab in place between
the plates of the capacitor?

Calculation: Taking g from (b) and V from (e), we have

oo 4 _102x107"C
% 523V

= 1.34 X 107" F = 13.4 pF.

This is greater than the original capacitance of 8.21 pE.

(Answer)



