Chapter 26

Current and Resistance




26.2: Electric Current:

Although an electric current is a stream of moving charges, not all moving
charges constitute an electric current. If there is to be an electric current through
a given surface, there must be a net flow of charge through that surface. Two
examples are given,

1. The free electrons (conduction electrons) in an isolated length of copper wire are in
random motion at speeds of the order of 106 m/s. If you pass a hypothetical plane
through such a wire, conduction electrons pass through it in both directions at the rate of
many billions per second—but there is no net transport of charge and thus no current
through the wire. However, if you connect the ends of the wire to a battery, you slightly
bias the flow in one direction, with the result that there now is a net transport of charge
and thus an electric current through the wire.

2. The flow of water through a garden hose represents the directed flow of positive
charge (the protons in the water molecules) at a rate of perhaps several million coulombs
per second. There is no net transport of charge, because there is a parallel flow of
negative charge (the electrons in the water molecules) of exactly the same amount
moving in exactly the same direction.



26.2: Electric Current:

Fig. 26-1 (a) A loop of copper 1n
electrostatic equilibrium. The entire
loop 1s at a single potential, and the
electric field is zero at all points in-
side the copper. (b) Adding a battery
imposes an electric potential differ-
ence between the ends of the loop
that are connected to the terminals
of the battery. The battery thus pro-
duces an electric field within the
loop, from terminal to terminal. and
the field causes charges to move
around the loop. This movement of
charges is a current .

(a)
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26.2: Electric Current:

The current is the same In

. a b .

Fig. 26-2 The current | | ¢ any cross section.
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The figure shows a section of a conductor, part of a conducting loop in which current has been
established. If charge dq passes through a hypothetical plane (such as aa’) in time dt, then the current i
through that plane is defined as:

. dq -
I = —?'T (definition of current).
(

The charge that passes through the plane in a time interval extending from 0 to t is:

r}'ZJ(ffI?ZJﬂfdr

Under steady-state conditions, the current is the same for planes aa’, bb’, and cc’and for all planes that
pass completely through the conductor, no matter what their location or orientation.

The Sl unit for current is the coulomb per second, or the ampere (A):

| ampere = 1 A = 1 coulomb per second = 1 C/s.



26.2: Electric Current, Conservation of Charge, and Direction of Current:

3 A current arrow 1s drawn in the direction in which positive charge carriers would move,
even If the actual charge carriers are negative and move in the opposite direction.

The current into the
junction must equal

the current out
(charge 1s conserved). z'l

Fig. 26-3 Therelationi; = i; + i,

is true at junction @ no matter what the
orientation in space of the three wires.
Currents are scalars, not vectors.




Example, Current is the Rate at which charge passes through a point:

Water flows through a garden hose at a volume flow rate dV/dt
of 450 cm?/s. What is the current of negative charge?

Calculations: We can write the current in terms of the
number of molecules that pass through such a plane per sec-
ond as

charge electrons \ [molecules

[ = per per per
electron molecule second
dN
= (e)(10) —.
or i = (e)(10) o

We substitute 10 electrons per molecule because a water
(H,O) molecule contains 8 electrons in the single oxygen atom
and 1 electron in each of the two hydrogen atoms.

We can express the rate dN/dt in terms of the given vol-
ume flow rate dV/dt by first writing

molecules molecules moles
per = per per unit
second mole mass

mass volume
X | per unit per
volume / \ second

ﬂ_ N (L) (dV) _ NApmass dV
di M pm PresTa )T T M ar

Substituting this into the equation for i, we find

dV
i = 10eNM p, s D7
We know that Avogadro’s number N, is 6.02 X 10 mole-
cules/mol, or 6.02 X 10% mol~!, and from Table 15-1 we
know that the density of water pp.s under normal condi-
tions is 1000 kg/m®. We can get the molar mass of water
from the molar masses listed in Appendix F (in grams per
mole): We add the molar mass of oxygen (16 g/mol) to
twice the molar mass of hydrogen (1 g/mol), obtaining 18
g/mol = 0.018 kg/mol. So, the current of negative charge
due to the electrons in the water is

i = (10)(1.6 X 107 C)(6.02 X 10% mol 1)
X (0.018 kg/mol)~1(1000 kg/m?)(450 X 10 ~° m?¥s)
=241 X107C/s =241 X 107 A
= 24.1 MA. (Answer)



26.3: Current Density:

The magnitude of current density, J, is equal to the current per unit area through any
element of cross section. It has the same direction as the velocity of the moving charges if
they are positive and the opposite direction if they are negative.

If the current is uniform across the surface and parallel to dA, then J is also uniform
and parallel to dA.

Here, A is the total area of the surface.

The Sl unit for current density is the ampere per square meter (A/m?).



26.3: Current Density:

Fig. 26-4 Streamlines representing
current density in the flow of charge
through a constricted conductor.

Figure 26-4 shows how current density can
be represented with a similar set of lines,
which we can call streamlines.

The current, which is toward the right, makes
a transition from the wider conductor at the
left to the narrower conductor at the right.
Since charge is conserved during the
transition, the amount of charge and thus the
amount of current cannot change.

However, the current density changes—it is
greater in the narrower conductor.



26.3: Current Density, Drift Speed:

Current is said to be due to positive charges that
are propelled by the electric field.

Fig. 26-5 Positive charge carri-
ers drift at speed v,in the direc-
tion of the applied electric field E.
By convention, the direction of
the current density 7 and the
sense of the current arrow are
drawn in that same direction.

When a conductor has a current passing through it, the electrons move randomly, but they tend to drift
with a drift speed v, in the direction opposite that of the applied electric field that causes the current.
The drift speed is tiny compared with the speeds in the random motion.

In the figure, the equivalent drift of positive charge carriers is in the direction of the applied electric
field, E. If we assume that these charge carriers all move with the same drift speed v, and that the current
density J is uniform across the wire’s cross-sectional area A, then the number of charge carriers in a
length L of the wire is nAL. Here n is the number of carriers per unit volume.

The total charge of the carriers in the length L, each with charge e, is then ¢ = (nAL)e.

L
The total charge moves through any cross section of the wire in the time interval = ——

Vg
J

__i_nALe_ . N
:> ‘- r Liv, = ndevy |:> 4T Ae ne

— ‘ 7= (ne)?d.l




Example, Current Density, Uniform and Nonuniform:

(a) The current density in a cylindrical wire of radius SO.Wwe rewrite Eq.26-5as
R = 2.0 mm is uniform across a cross section of the wire and is i=JA’

J =2.0 % 10> A/m% What is the current through the outer por- .
: _ and then substitute the data to find
tion of the wire between radial distances R/2 and R (Fig. 26-6a)?
i = (2.0 X 105 A/m2)(9.424 X 10~6 m?)

= 1.9A. (Answer)

Calculations: We want only the current through a reduced
cross-sectional area A" of the wire (rather than the entire

area), where

R\ 3R2)
A =aR - m|—) =
i — (L) = (2

3
= Tﬁ (0.0020 m)? = 9.424 X 106 m?.



Example, Current Density, Uniform and Nonuniform, cont.:

(b) Suppose, instead, that the current density through a
cross section varies with radial distance r as J = ar?, in which
a = 3.0 X 10" A/m* and r is in meters. What now is the cur-
rent through the same outer portion of the wire?
Calculations: The current density vector J (along the
wire’s length) and the differential area vector dA (per-
pendicular to a cross section of the wire) have the same di-
rection. Thus,

J-dA = JdA cos0 = JdA.

Calculations: The current density vector J (along the
wire’s length) and the differential area vector dA (per-
pendicular to a cross section of the wire) have the same di-
rection. Thus,

J-dA = JdAcos0O = JdA.

We need to replace the differential area dA with some-
thing we can actually integrate between the limits r = R/2
and r = R.The simplest replacement (because J is given as a
function of r) is the area 27rr dr of a thin ring of circumfer-
ence 27r and width dr (Fig. 26-6b). We can then integrate

(b)

'=j?-dZ=fjdA

R R
= j ar’ 2ar dr = Zﬂ'aj P dr

R2 R2
AR R 15
m[at]m 2 [ 16] 3 ™
15
= =5 7(3.0 X 10" A/m*)(0.0020 m)* = 7.1 A.

(Answer)



Example, In a current, the conduction electrons move very slowly.:

What is the drift speed of the conduction electrons in a cop-
per wire with radius r = 900 um when it has a uniform cur-
rent/ = 17 mA? Assume that each copper atom contributes
one conduction electron to the current and that the current
density is uniform across the wire’s cross section.

Calculations: Let us start with the third idea by writing

atoms atoms moles mass
n = |perunit | = | per per unit || per unit
volume mole mass volume

The number of atoms per mole is just Avogadro’s number
N, (= 6.02 X 10 mol™!). Moles per unit mass is the inverse
of the mass per mole, which here is the molar mass M of
copper. The mass per unit volume is the (mass) density pp.e
of copper. Thus,

1 NAPmass
— N —_ — 7.
n A( M )pmass M

Taking copper’s molar mass M and density pg,, from
Appendix F, we then have (with some conversions of units)

_(6.02 X 102 mol1)(8.96 X 103 kg/m?)

" 63.54 X 10~ kg/mol
= 8.49 X 10%electrons/m?
or n=2849 x 10¥ m3.

Next let us combine the first two key ideas by writing

Substituting for A with 7772 (= 2.54 X 10~® m?) and solving
for v, we then find

[

e ne(mr?)
~ 17 X 107 A
(8.49 X 102 m?)(1.6 X 1077 C)(2.54 X 10*m?)
= 4.9 X 1077 my/s, (Answer)

which is only 1.8 mm/h, slower than a sluggish snail.



26.4: Resistance and Resistivity:

We determine the resistance between any two points of a conductor by applying a potential

difference V between those points and measuring the current i that results. The resistance R
IS then

4 iy
R =— (definition of R).

The Sl unit for resistance that follows from Eq. 26-8 is the volt per ampere. This has a
special name, the ohm (symbol €2):

l ohm =1 Q = 1 volt per ampere
= 1 V/A.

In a circuit diagram, we represent a resistor and a resistance with the symbol an-.

Fig. 26-7 An assortment of resistors.

; 2 The circular bands are color-coding marks
- ,\,«» “’\ 4 ..fj“'"'#"' AR that identify the value of the resistance.
== ' ’ : ' ' (The Image Works)




26.4: Resistance and Resistivity:

The resistivity, p, of a resistor is defined as:

E —5 —

The Sl unit for pis 2m.

The conductivity o of a material is the reciprocal of its
resistivity:

1 —3 —
F:; - J = oF.

Table 26-1

Resistivities of Some Materials at Room
Temperature (20°C)

Resistivity, p Temperature
Material (2-m) Coefficient
of Resistivity,
a (K1)
Typical Metals
Silver 1.62 x 1078 4.1 x 1073
Copper 1.69 x 108 43 x 1073
Gold 235 x 1078 40x 1073
Aluminum 275 X 107% 44 x 1073
Manganin® 482 x 107%  0.002 X 1073
Tungsten 525 x 1078 45 x 1073
Iron 9.68 x 10~® 6.5 x 1073
Platinum 10.6 x 10~% 39 x 1073
Typical
Semiconductors
Silicon,
pure 2.5 x 10° —70 x 1073
Silicon,
n-type” 8.7 x 10~*
Silicon,
p-typet 28 x 1073
Typical
Insulators
Glass 1010—10M"
Fused
quartz ~1016



26.4: Resistance and Resistivity, Calculating Resistance from Resistivity:

s Resistance 1s a property of an object. Resistivity is a property of a material.

Current is driven by

E=V/L and J=i/A. a potential difference.
N i_‘ I-. ‘_i .
E VL — —
p = = — ‘ fjl_/l__lr
;A -

Fig. 26-9 A potential difference
I V is applied between the ends of a
wire of length L. and cross section A,

A establishing a current /.

If the streamlines representing the current
density are uniform throughout the wire,
the electric field, E, and the current
density, J, will be constant for all points
within the wire.



26.4: Resistance and Resistivity, Variation with Temperature:

10
Fig. 26-10 The re- ”é“ < E E Resistivity can depend
sistivity of copperasa G C | on temperature.
function of tempera- = 6 = :
ture. The dot on the :: g
curve marks a conve- § * E :
nient reference pointat 2 9| & I
temperature 7, = 293 & 1 (To: Po)
K and resistivity p; = 00" 200 400 600 800 1000 1200
1.69 X 1073 Q)-m. Temperature (K)

The relation between temperature and resistivity for copper—and for metals in general—
Is fairly linear over a rather broad temperature range. For such linear relations we can
write an empirical approximation that is good enough for most engineering purposes:

p— po= poc(T —T,).




Example, A material has resistivity, a block of the material has a resistance.:

A rectangular block of iron has dimensions 1.2 cm X 1.2
cm X 15 cm. A potential difference is to be applied to
the block between parallel sides and in such a way that
those sides are equipotential surfaces (as in Fig. 26-8b).
What is the resistance of the block if the two parallel
sides are (1) the square ends (with dimensions 1.2 cm X
1.2 cm) and (2) two rectangular sides (with dimensions
1.2cm X 15 cm)?

KEY IDEA

The resistance R of an object depends on how the electric
potential is applied to the object. In particular, it depends
on the ratio L/A, according to Eq. 26-16 (R = pL/A),
where A is the area of the surfaces to which the potential
difference is applied and L is the distance between those
surfaces.

Calculations: For arrangement 1, we have L =15cm =
0.15 m and

A= (12cm)* = 1.44 X 10~* m?

Substituting into Eq. 26-16 with the resistivity p from Table
26-1, we then find that for arrangement 1,

pL  (9.68 X 107 Q-m)(0.15 m)
A 1.44 X 10~* m?
=1.0 X 107*Q = 100 ud.

R =

(Answer)

Similarly, for arrangement 2, with distance L = 1.2 cm
and area A = (1.2 cm)(15 cm), we obtain

pL (968X 10780-m)(12 X 10~2m)
A 1.80 X 1073 m?
= 6.5 % 10770 = 0.65 p.

R =

(Answer)



26.5: Ohm’s Law:

3 Ohm’s law 1s an assertion that the current through a device is always directly
proportional to the potential difference applied to the device.

a A conducting device obeys Ohm’s law when the resistance of the device 1s indepen-
dent of the magnitude and polarity of the applied potential difference.

s A conducting material obeys Ohm’s law when the resistivity of the material is
independent of the magnitude and direction of the applied electric field.

Current (mA)
+ +
o -

=

|
~a

+2 -4 =2 0 +2 44

Potential difference (V)
(¢)
Fig. 26-11 (a) A potential difference V
1s applied to the terminals of a device,
establishing a current i. (b) A plot of cur-
4 -9 0 29 4 rent i versus applied potential difference V'
Potential difference (V) when the device 1s a 1000 {1 resistor. (¢) A

(&) plot when the device 1s a semiconducting

pn junction diode.

Current (mA)
o




26.6: A Macroscopic View of Ohm’s Law:

It is often assumed that the conduction electrons in a metal move with a single effective speed
Vg and this speed is essentially independent of the temperature. For copper, vy =1.6 x10m/s.

When we apply an electric field to a metal sample, the electrons modify their random motions
slightly and drift very slowly—in a direction opposite that of the field—with an average drift
speed vy. The drift speed in a typical metallic conductor is about 5 x10-" m/s, less than the
effective speed (1.6 x10® m/s) by many orders of magnitude.

The motion of conduction electrons in an electric field is a combination of the motion due to
random collisions and that due to E.

If an electron of mass m is placed in an electric field of magnitude E, the electron will

experience an acceleration:  _ £ _ ek
m m
In the average time t between collisions, the average electron will acquire a drift speed of v,
— E
=ar. => v, = ar = emT .

m

- J E _ m
J =nev, =) V4= =T = E—(Z )J. |=>|p= '

ne m enT ent




Example, Mean Free Time and Mean Free Distance:

(a) What is the mean free time 7 between collisions for the
conduction electrons in copper?

KEY IDEAS

The mean free time 7 of copper is approximately constant, and
in particular does not depend on any electric field that might be
applied to a sample of the copper. Thus, we need not consider
any particular value of applied electric field. However, because
the resistivity p displayed by copper under an electric field de-
pends on 7, we can find the mean free time 7from Eq.26-22 (p =
mle’nr).

Calculations: That equation gives us

m

(26-23)

T = .
ne’p

The number of conduction electrons per unit volume in cop-
per is 8.49 X 102 m 3. We take the value of p from Table
26-1.The denominator then becomes
(8.49 X 10 m3)(1.6 X 107 C)*(1.69 X 10830 -m)

= 3.67 X 1077 C2-QUm? = 3.67 X 101 kgfs,

where we converted units as

2.0  C-V _ C2JC _ kgm¥s® kg

m?2 m2-A  m2-Cls m2/s s

Using these results and substituting for the electron mass m,
we then have

91X 10 kg
"7 367 x 107 kg/s

=2.5x 10""s. (Answer)

(b) The mean free path A of the conduction electrons in a
conductor is the average distance traveled by an electron
between collisions. (This definition parallels that in
Section 19-6 for the mean free path of molecules in a gas.)
What is A for the conduction electrons in copper, assum-
ing that their effective speed v gis 1.6 X 10° m/s?

KEY IDEA

The distance d any particle travels in a certain time ¢ at a
constant speed visd = vt.

Calculation: For the electrons in copper, this gives us

A= Verf T (26-24)
= (1.6 X 105 m/s)(2.5 X 107%5)
= 4.0 X 107*m = 40 nm. (Answer)

This is about 150 times the distance between nearest-neigh-
bor atoms in a copper lattice. Thus, on the average, each con-
duction electron passes many copper atoms before finally
hitting one.



26.7: Power in Electric Circuits: The battery at the left

supplies energy to the

In the figure, there is an external conducting path between conduction electrons
the two terminals of the battery. A steady current i is that form the current.
produced in the circuit, directed from terminal a to i
terminal b. The amount of charge dg that moves between |
those terminals in time interval dt is equal to i dt. E-T l*
This charge dg moves through a decrease in potential of sl s
magnitude V, and thus its electric potential energy - .
decreases in magnitude by the amount T
dU=dqV =idtV. l
The power P associated with that transfer is the rate of :
transfer dU/dt, given by Fig. 26-13 A battery Bsetsup a
_ _ current / In a circuit containing an
pP=1V (rate of electrical energy transfer). unspecified conducting device.
VZ
P =i’R (resistive dissipation) | ™= P = R (resistive dissipation).

The unit of power is the volt-ampere (V A). =& [V.A = (1 %) ('1 £) = 1i =1W.
. 5



Example, Rate of Energy Dissipation in a Wire Carrying Current:

You are given a length of uniform heating wire made of a
nickel-chromium-iron alloy called Nichrome; it has a re-
sistance R of 72 (). At what rate is energy dissipated in each
of the following situations? (1) A potential difference of 120
Vis applied across the full length of the wire. (2) The wire is
cut in half, and a potential difference of 120 V is applied
across the length of each half.

KEY IDEA

Current in a resistive material produces a transfer of mechani-
cal energy to thermal energy; the rate of transfer (dissipation)
is given by Eqs. 26-26 to 26-28.

Calculations: Because we know the potential V and resis-
tance R, we use Eq.26-28, which yields, for situation 1,

P V2 B (120\7)2
R 72 Q)
In situation 2, the resistance of each half of the wire is

(72 Q)12,0r 36 2. Thus, the dissipation rate for each half is

=200 W.

(Answer)

(120 V)2
I =400 W,
360
and that for the two halves is
P=2P" =800W. (Answer)

This is four times the dissipation rate of the full length of
wire. Thus, you might conclude that you could buy a heating
coil, cut it in half, and reconnect 1t to obtain four times the
heat output. Why is this unwise? (What would happen to the
amount of current in the coil?)



26.8: Semiconductors:

Table 26-2

Some Electrical Properties of Copper and Silicon

Property Copper Silicon
Type of material Metal Semiconductor
Charge carrier density, m™> 8.49 x 102 1 X 1016
Resistivity, {1 - m 1.69 X 108 2.5 %103
Temperature coefficient of resistivity, K™! +43x 103 —70 x 1073

Pure silicon has a high resistivity and it is effectively an insulator. However, its resistivity can be
greatly reduced in a controlled way by adding minute amounts of specific “impurity” atoms in a
process called doping.

A semiconductor is like an insulator except that the energy required to free some electrons is not quite
so great. The process of doping can supply electrons or positive charge carriers that are very loosely
held within the material and thus are easy to get moving. Also, by controlling the doping of a
semiconductor, one can control the density of charge carriers that are responsible for a current.

m

The resistivity in a conductor is givenby:  p=——,
e“nT

In a semiconductor, n is small but increases very rapidly with temperature as the increased thermal
agitation makes more charge carriers available. This causes a decrease of resistivity with increasing
temperature. The same increase in collision rate that is noted for metals also occurs for
semiconductors, but its effect is swamped by the rapid increase in the number of charge carriers.



26.9: Superconductors:
t
E e 2
TR —

A disk-shaped magnet is levitated above
a superconducting material that has been
cooled by liquid nitrogen. The goldfish is
along for the ride.(Courtesy Shoji
Tonaka/International Superconductivity
Technology Center, Tokyo, Japan)

-

In 1911, Dutch physicist Kamerlingh Onnes
discovered that the resistivity of mercury absolutely
disappears at temperatures below about 4 K .This
phenomenon is called superconductivity, and it
means that charge can flow through a
superconducting conductor without losing its
energy to thermal energy.

One explanation for superconductivity is that the
electrons that make up the current move in
coordinated pairs. One of the electrons in a pair
may electrically distort the molecular structure of
the superconducting material as it moves through,
creating nearby a short-lived concentration of
positive charge. The other electron in the pair may
then be attracted toward this positive charge. Such
coordination between electrons would prevent them
from colliding with the molecules of the material
and thus would eliminate electrical resistance. New
theories appear to be needed for the newer, higher
temperature superconductors.



