
Chapter 28 

Magnetic Fields 



28.2: What Produces a Magnetic Field?: 

One way that magnetic fields are produced is to 

use moving electrically charged particles, such as 

a current in a wire, to make an electromagnet. 

The current produces a magnetic field that is 

utilizable.  

 

 

The other way to produce a magnetic field is by 

means of elementary particles such as electrons,  

because these particles have an intrinsic 

magnetic field around them. 

 

The magnetic fields of the electrons in certain 

materials add together to give a net magnetic 

field around the material. Such addition is the 

reason why a permanent magnet, has a 

permanent magnetic field.  

 

In other materials, the magnetic fields of the 

electrons cancel out, giving no net magnetic field 

surrounding the material. 



28.3: The Definition of B: 

We can define a magnetic field, B, by firing a charged particle through the point at 

which is to be defined, using various directions and speeds for the particle and 

determining the force that acts on the particle at that point. B is then defined to be a 

vector quantity that is directed along the zero-force axis.  

 

The magnetic force on the charged particle, FB, is defined to be: 

 

 

 

Here q is the charge of the particle, v is its velocity, and B the magnetic field in the 

region. The magnitude of this force is then: 

 

 

Here f is the angle between vectors v and B. 



28.3: Finding the Magnetic Force on a Particle: 



28.3: The Definition of B: 

The SI unit for B that follows is newton 

per coulomb-meter per second. For 

convenience, this is called the tesla (T): 

 

 

 

 

 

 

 

 

An earlier (non-SI) unit for B is the gauss 

(G), and 



28.3: Magnetic Field Lines: 

The direction of the tangent to a magnetic 

field line at any point gives the direction of 

B at that point. 

The spacing of the lines represents the 

magnitude of B —the magnetic field is 

stronger where the lines are closer together, 

and conversely. 



Example, Magnetic Force on a Moving Charged Particle : 



28.4: Crossed Fields: Discovery of an Electron 

When the two fields in Fig. 28-7 are adjusted so that the two deflecting forces acting on the 

charged particle cancel, we have 

 

 

Thus, the crossed fields allow us to measure the speed of the charged particles passing 

through them.  

The deflection of a charged particle, moving through an electric field, E, between two 

plates, at the far end of the plates (in the previous problem) is 

 

 

Here, v is the particle’s speed, m its mass, q its charge, and L is the length of the plates. 



28.5: Crossed Fields: The Hall Effect 

Fig. 28-8 A strip of copper carrying a current i is immersed in a magnetic 

field . (a)The situation immediately after the magnetic field is turned on. The 

curved path that will then be taken by an electron is shown. (b) The situation 

at equilibrium, which quickly follows. Note that negative charges pile up on 

the right side of the strip, leaving uncompensated positive charges on the 

left. Thus, the left side is at a higher potential than the right side. (c) For the 

same current direction, if the charge carriers were positively charged, they 

would pile up on the right side, and the right side would be at the higher 

potential. 

A Hall potential difference V is associated with the electric field across strip 

width d, and the magnitude of that potential difference is V =Ed. When the 

electric and magnetic forces are in balance (Fig. 28-8b),  

 

where vd is the drift speed. But,  

 

 

Where J is the current density, A the cross-sectional area, e the electronic charge, 

and n the number of charges per unit volume. 

 

Therefore,    Here, l=( A/d), the thickness of the strip. 



Example, Potential Difference Setup Across a Moving Conductor: 



Example, Potential Difference Setup Across a Moving Conductor, cont.: 



28.6: A Circulating Charged Particle: 

Consider a particle of charge magnitude |q| and mass 

m moving perpendicular to a uniform magnetic field 

B, at speed v. 

 

The magnetic force continuously deflects the particle, 

and since B and v are always perpendicular to each 

other, this deflection causes the particle  to follow a 

circular path.  

 

The magnetic force acting on the particle has a 

magnitude of |q|vB. 

 

For uniform circular motion 

 

 

Fig. 28-10 Electrons circulating in a chamber containing gas 

at low pressure (their path is the glowing circle). A uniform 

magnetic field, B, pointing directly out of the plane of the 

page, fills the chamber. Note the radially directed magnetic 

force FB ; for circular motion to occur, FB must point toward 

the center of the circle, (Courtesy John Le P.Webb, Sussex 

University, England) 



28.6: Helical Paths: 

Fig. 28-11 (a) A charged particle moves in a uniform magnetic field , the particle’s velocity v making an angle f 

with the field direction. (b) The particle follows a helical path of radius r and pitch p. (c) A charged particle 

spiraling in a nonuniform magnetic field. (The particle can become trapped, spiraling back and forth between the 

strong field regions at either end.) Note that the magnetic force vectors at the left and right sides have a 

component pointing toward the center of the figure. 

 

The velocity vector, v, of such a particle resolved into two components, one parallel to and 

one perpendicular to it: 

 

The parallel component determines the pitch p of the helix (the distance between adjacent 

turns (Fig. 28-11b)). The perpendicular component determines the radius of the helix.  

The more closely spaced field lines at the left and right sides indicate that the magnetic field is 

stronger there. When the field at an end is strong enough, the particle “reflects” from that end. 

If the particle reflects from both ends, it is said to be trapped in a magnetic bottle. 



Example, Helical Motion of a Charged Particle in a Magnetic Field: 



Example, Uniform Circular Motion  

of a Charged Particle in a Magnetic Field: 



28.7: Cyclotrons and Synchrotrons  

Suppose that a proton, injected by source S at the center of the 

cyclotron in Fig. 28-13, initially moves toward a negatively 

charged dee. It will accelerate toward this dee and enter it. 

Once inside, it is shielded from electric fields by the copper 

walls of the dee; that is, the electric field does not enter the dee. 

The magnetic field, however, is not screened by the 

(nonmagnetic) copper dee, so the proton moves in a circular 

path whose radius, which depends on its speed, is given 

by (r =mv/|q|B). 

 

Let us assume that at the instant the proton emerges into the 

center gap from the first dee, the potential difference between 

the dees is reversed. Thus, the proton again faces a negatively 

charged dee and is again accelerated. This process continues, 

the circulating proton always being in step with the oscillations 

of the dee potential, until the proton has spiraled out to the edge 

of the dee system. There a deflector plate sends it out through a 

portal.  

 

The frequency f at which the proton circulates in the magnetic 

field (and that does not depend on its speed) must be equal to 

the fixed frequency fosc of the electrical oscillator: 



28.7: The Proton Synchrotron : 

At proton energies above 50 MeV, the conventional cyclotron begins to fail. 

Also, for a 500 GeV proton in a magnetic field of 1.5 T, the path radius is 1.1 

km. The corresponding magnet for a conventional cyclotron of the proper size 

would be impossibly expensive. 

 

In the proton synchrotron the magnetic field B, and the oscillator frequency 

fosc, instead of having fixed values as in the conventional cyclotron, are made 

to vary with time during the accelerating cycle. 

 

When this is done properly,  

(1) the frequency of the circulating protons remains in step with the oscillator 

at all times, and  

(2) the protons follow a circular—not a spiral—path. Thus, the magnet need 

extend only along that circular path, not over some 4x106 m2. The circular 

path, however, still must be large if high energies are to be achieved.  

 

The proton synchrotron at the Fermi National Accelerator Laboratory 

(Fermilab) in Illinois has a circumference of 6.3 km and can produce protons 

with energies of about 1 TeV ( 1012 eV). 



Example, Accelerating a Charged Particle in a Synchrotron: 



28.8: Magnetic Force on a  

Current-Carrying Wire: 



28.8: Magnetic Force on a  

Current-Carrying Wire: Consider a length L of the wire in the figure. All 

the conduction electrons in this section of wire 

will drift past plane xx in a time t =L/vd. 

 

Thus, in that time a charge will pass through that 

plane that is given by 

 

 

 

 

 

 

 

 

 

Here L is a length vector that has magnitude L 

and is directed along the wire segment in the 

direction of the (conventional) current. 

If a wire is not straight or the field is not uniform, we can imagine the wire broken up into small straight 

segments . The force on the wire as a whole is then the vector sum of all the forces on the segments that 

make it up. In the differential limit, we can write     and we can find the resultant force 

on any given arrangement of currents by integrating Eq. 28-28 over that arrangement. 



Example, Magnetic Force on a Wire Carrying Current: 



28.9: Torque on a Current Loop: 

The two magnetic forces F and –F produce a torque on the loop, tending to rotate it 

about its central axis.  



28.9: Torque on a Current Loop: 

To define the orientation of the loop in the magnetic field, we use a normal vector n that is 

perpendicular to the plane of the loop. Figure 28-19b shows a right-hand rule for finding the 

direction of n. In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle q 

to the direction of the magnetic field. 

 

For side 2 the magnitude of the force acting on this side is F2=ibB sin(90°-q)=ibB cosq =F4. 

F2 and F4 cancel out exactly. 

Forces F1 and F3 have the common magnitude iaB. As Fig. 28-19c shows, these two forces 

do not share the same line of action; so they produce a net torque. 

 

 

For N loops, when A=ab, the area of the loop, the total torque is: 

 

 



28.10: The Magnetic Dipole Moment, m: 

Definition: 

Here, N is the number of turns in the coil, i is the current through the coil, and A 

is the area enclosed by each turn of the coil.  

 

Direction: The direction of m  is that of the normal vector to the plane of the coil.  

The definition of torque can be rewritten as:  

 

 

 

 

Just as in the electric case, the magnetic dipole in an external 

magnetic field has an energy that depends on the dipole’s 

orientation in the field: 

 

 

A magnetic dipole has its lowest energy (-mB cos 0=-mB) 

when its dipole moment m is lined up with the magnetic field. 

It has its highest energy (-mB cos 180°=+mB) when m is 

directed opposite the field.   



28.10: The Magnetic Dipole Moment, m: 

From the above equations, 

one can see thatthe unit of m 

can be the joule per tesla 

(J/T), or the ampere–square 

meter. 


