Chapter 28

Magnetic Fields




28.2: What Produces a Maanetic Field?:

Fig. 28-1 Using an electromagnet to collect and transport scrap metal at a steel mill.
(Digital Vision/Getty Images)

One way that magnetic fields are produced is to
use moving electrically charged particles, such as
a current in a wire, to make an electromagnet.
The current produces a magnetic field that is
utilizable.

The other way to produce a magnetic field is by
means of elementary particles such as electrons,
because these particles have an intrinsic
magnetic field around them.

The magnetic fields of the electrons in certain
materials add together to give a net magnetic
field around the material. Such addition is the
reason why a permanent magnet, has a
permanent magnetic field.

In other materials, the magnetic fields of the
electrons cancel out, giving no net magnetic field
surrounding the material.



28.3: The Definition of B:

We can define a magnetic field, B, by firing a charged particle through the point at
which is to be defined, using various directions and speeds for the particle and
determining the force that acts on the particle at that point. B is then defined to be a
vector quantity that is directed along the zero-force axis.

The magnetic force on the charged particle, Fg, is defined to be:

F;=qv x B
Here q is the charge of the particle, v is its velocity, and B the magnetic field in the
region. The magnitude of this force is then:

Fy = lglvB sin ¢,
Here ¢ is the angle between vectors v and B.



28.3: Finding the Magnetic Force on a Particle:

Force on positive Force on negative
Cross v into B to get the new vector v x B . particle particle

(a) (b)

Fig. 28-2 (a) - (¢) The right-hand rule (in which ¥ is swept into B through the smaller
angle ¢ between them) gives the direction of v X B as the direction of the thumb. (d)Ifq
is positive, then the direction of fB = gV X B is in the direction of ¥ X B. (e) If g is nega-
tive, then the direction of fB is opposite that of v X B.

W The force F, 5 acting on a charged particle moving with velocity V' through
a magnetic field B is always perpendicular to v and B.



28.3: The Definition of B:

Table 28-1

Some Approximate Magnetic Fields

At surface of neutron star 108T
Near big electromagnet 15T
Near small bar magnet 1072T
At Earth’s surface 1074T
In interstellar space 1071°T
Smallest value in

magnetically

shielded room 10714T

The Sl unit for B that follows is newton
per coulomb-meter per second. For
convenience, this is called the tesla (T):

ltesla=1T = 1 newton

(coulomb)(meter/second)

B newton _ 1 N
~~ (coulomb/second)(meter) = A-m

An earlier (non-Sl) unit for B is the gauss
(G), and

1 tesla = 10* gauss.



28.3: Magnetic Field Lines:

U The direction of the tangent to a magnetic
field line at any point gives the direction of

B at that point.

U The spacing of the lines represents the
magnitude of B —the magnetic field is »
stronger where the lines are closer together,
and conversely.

Fig. 28-4 (a)The magnetic field
lines for a bar magnet. (b) A “cow
magnet” —a bar magnet that is in-
tended to be slipped down into the ru-
men of a cow to prevent accidentally _
ingested bits of scrap iron from reach- . —
ing the cow’s intestines. The iron filings (b)

at its ends reveal the magnetic field

lines. (Courtesy Dr. Richard Cannon,

Southeast Missourt State University,

Cape Girardeau)

-
W Opposite magnetic poles attract each other, and like magnetic poles repel each other.



Example, Magnetic Force on a Moving Charged Particle :

A uniform magnetic field B, with magnitude 1.2mT, is
directed vertically upward throughout the volume of a labo-
ratory chamber. A proton with Kinetic energy 5.3 MeV en-
ters the chamber, moving horizontally from south to north.
What magnetic deflecting force acts on the proton as it en-
ters the chamber? The proton mass is 1.67 X 107 kg.
(Neglect Earth’s magnetic field.)

KEY IDEAS

Because the proton is charged and moving through a mag-
netic field, a magnetic force F can act on it. Because the ini-
tial direction of the proton’s velocity is not along a magnetic
field line, F is not simply zero.

Magnitude: To find the magnitude of F, s, We can use Eq.28-3
(Fg = lglvB sin ¢) provided we first find the proton’s speed v.
We can find v from the given Kkinetic energy because
K = Imv2. Solving for v, we obtain

H2K
T el

=32 X 10? m/s.

(2)(53 MeV)(1.60 X 10-B J/MeV)
1.67 x 1077 kg

Equation 28-3 then yields
Fp = IglvB sin ¢
= (1.60 X 107 C)(3.2 X 10" m/s)
X (1.2 X 1073 T)(sin 90°)
=6.1 X 1075 N. (Answer)

This may seem like a small force, but it acts on a particle of
small mass, producing a large acceleration; namely,

_F _ 61x10°N

= 3.7 X 102 m/s>
m 167 X 10 2 kg e

Direction: To find the direction of F, 5. We use the fact that fg
has the direction of the cross product qv' X B. Because the
charge ¢ is positive, F, g must have the same direction as V" X B.
which can be determined with the right-hand rule for cross
products (as in Fig. 28-2d). We know that v is directed horizon-
tally from south to north and B is directed vertically up. The
right-hand rule shows us that the deflecting force F must be
directed horizontally from west to east, as Fig. 28-6 shows. (The
array of dots in the figure represents a magnetic field directed
out of the plane of the figure. An array of Xs would have repre-
sented a magnetic field directed into that plane.)

If the charge of the particle were negative, the magnetic
deflecting force would be directed in the opposite direction —
that is, horizontally from east to west. This is predicted auto-
matically by Eq. 28-2 if we substitute a negative value for g.

v / Path of proton

[ ° . .E
[ [ L] }.’B [
w E
o . ® .
b

Fig. 28-6 An overhead view of a proton moving from south to
north with velocity v in a chamber. A magnetic field is directed
vertically upward in the chamber, as represented by the array of
dots (which resemble the tips of arrows). The proton is deflected
toward the east.



28.4: Crossed Fields: Discovery of an Electron
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Fig. 28-7 A modern version of J.J.
Thomson’s apparatus for measuring the ra-
tio of mass to charge for the electron. An
electric field E is established by connecting
a battery across the deflecting-plate termi-
nals. The magnetic field B is set up by
means of a current in a system of coils (not
shown).The magnetic field shown is into
the plane of the figure, as represented by
the array of Xs (which resemble the feath-
ered ends of arrows).

When the two fields in Fig. 28-7 are adjusted so that the two deflecting forces acting on the
charged particle cancel, we have £

gIE = IglvB sin(90°) = IlgvB &) v = -

Thus, the crossed fields allow us to measure the speed of the charged particles passing

through them.

The deflection of a charged particle, moving through an electric field, E, betweentwo

plates, at the far end of the plates (in the previous problem) is qlEL? m _ BL”
AW gl 2vE

Here, v is the particle’s speed, m its mass, q its charge, and L is the length of the plates.



28.5: Crossed Fields: The Hall Effect

Fig. 28-8 A strip of copper carrying a current i is immersed in a magnetic
field . (a)The situation immediately after the magnetic field is turned on. The
curved path that will then be taken by an electron is shown. (b) The situation
at equilibrium, which quickly follows. Note that negative charges pile up on
the right side of the strip, leaving uncompensated positive charges on the
left. Thus, the left side is at a higher potential than the right side. (c) For the
same current direction, if the charge carriers were positively charged, they
would pile up on the right side, and the right side would be at the higher
potential.

\ml X

A Hall potential difference V is associated with the electric field across strip
width d, and the magnitude of that potential difference is V =Ed. When the
electric and magnetic forces are in balance (Fig. 28-8b),

el = ev, B
J [
ne neA

Where J is the current density, A the cross-sectional area, e the electronic charge,
and n the number of charges per unit volume,

where v, is the drift speed. But,

Therefore, , — b7
Vie

Here, I=( A/d), the thickness of the strip.
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Example, Potential Difference Setup Across a Moving Conductor:

Electrons are forced

This is the cross- to the left face, leaving

This is the magnetic

) product result. force on an electron. the right face positive.
[ T | r

Y _,._% P A
= T vV X

. v XB —e - a5

:F!- = =+

—X B —X —X
(b) (¢) (d)

d
/ (a)
* /B

This is the resulting

The weak electric

field

Figure 28-9a shows a solid metal cube, of edge length
d = 1.5 cm, moving in the positive y direction at a constant
velocity v of magnitude 4.0 m/s. The cube moves through a

creates a weak ) ) ‘> ) } ’
uniform magnetic field B of magnitude 0.050 T in the posi-

electric field. electric force. . o
tive z direction.
b y
| | (a) Which cube face is at a lower electric potential and
+= . <= which is at a higher electric potential because of the motion
_ B E through the field?
L . Fg Fp | Most of the electrons are fixed in place in the atoms

() (f)

Reasoning: When the cube first begins to move through
the magnetic field, its electrons do also. Because each elec-
tron has charge ¢ and is moving through a magnetic field
with velocity V', the magnetic force Fy acting on the elec-
tron is given by Eq. 28-2. Because ¢ is negative, the direc-
tion of Fy is opposite the cross product v X B, which is in
the positive direction of the x axis (Fig. 28-95b). Thus, fg
acts in the negative direction of the x axis, toward the left
face of the cube (Fig. 28-9c¢).

of the cube. However, because the cube is a metal, it con-
tains conduction electrons that are free to move. Some of
those conduction electrons are deflected by Fj to the left
cube face, making that face negatively charged and
leaving the right face positively charged (Fig. 28-94). This
charge separation produces an electric field E directed
from the positively charged right face to the negatively
charged left face (Fig. 28-9¢). Thus, the left face is at
a lower electric potential, and the right face is at a higher
electric potential.



Example, Potential Difference Setup Across a Moving Conductor, cont.:

The weak electric
field creates a weak
electric force.
¥
x |

¥

d
(a)

1%‘1“

B
)

(b) What is the potential difference between the faces of
higher and lower electric potential?

1.

78]

The electric field E created by the charge separation
produces an electric force fp‘ = qE on each electron
(Fig. 28-9f). Because ¢ is negative, this force is directed oppo-
site the field E —that is, rightward. Thus on each electron, fE
acts toward the right and F acts toward the left.

When the cube had just begun to move through the
magnetic field and the charge separation had just
begun, the magnitude of E began to increase from zero.
Thus, the magnitude of F also began to increase from
zero and was initially sm'lller than the magnitude Fp.
During this early stage, the net force on any electron was
dominated by Fp. which continuously moved additional
electrons to the left cube face, increasing the charge sepa-
ration (Fig. 28-9g).

However, as the charge separation increased, eventu-
ally magnitude Fp became equal to magnitude Fj (Fig.
28-9h).The net force on any electron was then zero, and

The forces now
balance. No more
electrons move to
the left face.

More migration
creates a greater
electric field.

¥

S
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E *
i — —
+—x FB FE —X
(g (R)

no additional electrons were_}moved to the left cube
face. Thus, the magnitude of F could not increase fur-

ther, and the electrons were then in equilibrium.
Calculations: We seek the potential difference V between

the left and right cube faces after equilibrium was reached
(which occurred quickly). We can obtain V' with Eq. 28-9
(V = Ed) provided we first find the magnitude E of the
electric field at equilibrium. We can do so with the equation
for the balance of forces (Fr = Fp).

For F, we substitute IglE, and then for Fj, we substitute
lglvB sin ¢ from Eq. 28-3. From Fig. 28-9a, we see that the
angle ¢ between velocity vector v and magnetic field vector
B 1s90°; thus sin ¢ = 1 and Fy = Fpyields

lglE = IqlvB sin 90° = IqlvB.
This givesus £ = vB:so V = Ed becomes
V =vBd. (28-13)

Substituting known values gives us

V = (4.0 m/s)(0.050 T)(0.015 m)

= 0.0030 V = 3.0 mV. (Answer)



28.6: A Circulating Charged Particle:

Consider a particle of charge magnitude |g| and mass
m moving perpendicular to a uniform magnetic field
B, at speed v.

The magnetic force continuously deflects the particle,
and since B and v are always perpendicular to each
other, this deflection causes the particle to follow a
circular path.

The magnetic force acting on the particle has a
magnitude of |q|vB.
VZ

For uniform circular motion F=m -

2

myv
lglvB =
r
ml”, - - - - - - -
r= (radius). Fig. 28-10 Electrons circulating in a chamber containing gas
lq|B ) . T )
at low pressure (their path is the glowing circle). A uniform
7 2ar 2w mv _ 2am _ magnetic field, B, pointing directly out of the plane of the
" v v IgB  IqB (period). page, fills the chamber. Note the radially directed magnetic
{ B force Fg ; for circular motion to occur, Fg must point toward
f=—= 4 (frequency). the center of the circle, (Courtesy John Le P.Webb, Sussex
r 2mm University, England)
lq!B

w=27f= (angular frequency).
m



28.6: Helical Paths:

The velocity component //
perpendicular to the field

causes circling, which is ( /\
stretched upward by the
parallel component.

(@) (b) (¢)

Fig. 28-11 (a) A charged particle moves in a uniform magnetic field , the particle’s velocity v making an angle f
with the field direction. (b) The particle follows a helical path of radius r and pitch p. (c) A charged particle
spiraling in a nonuniform magnetic field. (The particle can become trapped, spiraling back and forth between the
strong field regions at either end.) Note that the magnetic force vectors at the left and right sides have a
component pointing toward the center of the figure.

The velocity vector, v, of such a particle resolved into two components, one parallel to and
one perpendicular to it: vy =vcos¢ and v, = vsin ¢.

The parallel component determines the pitch p of the helix (the distance between adjacent
turns (Fig. 28-11b)). The perpendicular component determines the radius of the helix.

The more closely spaced field lines at the left and right sides indicate that the magnetic field is
stronger there. When the field at an end is strong enough, the particle “reflects” from that end.
If the particle reflects from both ends, it is said to be trapped in a magnetic bottle.



Example, Helical Motion of a Charged Particle in a Magnetic Field:

An electron with a kinetic energy of 22.5 ¢V moves into a
region of uniform magnetic field B of magnitude 4.55 X
107*T. The angle between the directions of B and the elec-
tron’s velocity V" is 65.5°. What is the pitch of the helical
path taken by the electron?

KEY IDEAS

(1) The pitch p is the distance the electron travels parallel to
the magnetic field B during one period T of circulation. (2)
The period T is given by Eq. 28-17 regardless of the angle
between the directions of ¥and B (provided the angle is not
zero, for which there is no circulation of the electron).

Calculations: Using Eqs. 28-20 and 28-17, we find

2mm

(vcos ) ——

2821
B (25-21)

p=wT=

Calculating the electron’s speed v from its kinetic energy,
find that v =2.81 X 10°m/s. Substituting this and known
data in Eq. 28-21 gives us

= (2.81 X 10° m/s)(cos 65.5°)

2m(9.11 X 1073 ko)
(1.60 X 1071 C)(4.55 X 1074 T)
= 0.16 cm.

(Answer)



Example, Uniform Circular Motion

of a Charged Particle in a Magnetic Field:

Figure 28-12 shows the essentials of a mass spectrometer,
which can be used to measure the mass of an 1on; an ion of
mass m (to be measured) and charge g is produced in
source S. The initially stationary ion is accelerated by the
electric field due to a potential difference V. The ion leaves
S and enters a separator chamber in which a uniform mag-
netic field B is perpendicular to the path of the ion. A wide
detector lines the bottom wall of the chamber, and the B
causes the ion to move in a semicircle and thus strike the
detector. Suppose that B = 80.000 mT, V' = 1000.0 V, and
ions of charge ¢ = +1.6022 X 1071° C strike the detector
at a point that lies at x = 1.6254 m. What i1s the mass m of
the individual ions, in atomic mass units (Eq. 1-7: 1 u =
1.6605 X 107?7 kg)?

Finding speed: When the ion emerges from the source, its

kinetic energy is approximately zero. At the end of the
acceleration, its kinetic energy is %mvz. Also, during the ac-
celeration, the positive ion moves through a change in
potential of —V.Thus, because the 1on has positive charge q,
its potential energy changes by —gV. If we now write the
conservation of mechanical energy as

AK + AU =0,
we get
vt —qV =0
2qV
or p= |4 (28-22)
m

Detector
L ] | L ]

Fig. 28-12 Essentials of a mass spectrometer. A positive
ion, after being accelerated from its source $ by a potential dif-
ference V, enters a chamber of uniform magnetic field B.
There it travels through a semicircle of radius r and strikes a
detector at a distance x from where it entered the chamber.

Finding mass: Substituting this value for v into Eq. 28-16

gives us
l 2mV
r= A / N
qB qB q
2mV.

Thus, r—Zr—§ p

Solving this for m and substituting the given data yield

B?gx?

8V
~(0.080000 T)%(1.6022 X 107 C)(1.6254 m)?
; 8(1000.0 V)

= 3.3863 X 107 kg = 203.93 u.

Hn =

(Answer)



28.7: Cyclotrons and Synchrotrons

Suppose that a proton, injected by source S at the center of the
cyclotron in Fig. 28-13, initially moves toward a negatively
charged dee. It will accelerate toward this dee and enter it.
Once inside, it is shielded from electric fields by the copper

The protons spiral outward
in a cyclotron, picking up
energy in the gap.

walls of the dee; that is, the electric field does not enter the dee. Dee ff”:'__:_i:“‘n Dee

The magnetic field, however, is not screened by the /./;,, e N :\

(nonmagnetic) copper dee, so the proton moves in a circular AP N ‘“\\ \

path whose radius, which depends on its speed, is given PO RN

by (r =mv/|q|B). L (el eselalis)d
\\ ¢ 1"\‘ 2~ 8 .____i'; /f- ;Jf m’j ,L

Let us assume that at the instant the proton emerges into the Beamn™( \\\ S0 )

center gap from the first dee, the potential difference between \\k}H s ,Jf:,'f:?’

the dees is reversed. Thus, the proton again faces a negatively s o e a7

charged dee and is again accelerated. This process continues, Deflector - B

the circulating proton always being in step with the oscillations plate | |

of the dee potential, until the proton has spiraled out to the edge Oscillator

of the dee system. There a deflector plate sends it out through a

Fig. 28-13 The elements of a cy-
clotron, showing the particle source S
and the dees. A uniform magnetic
field 1s directed up from the plane of
the page. Circulating protons spiral
outward within the hollow dees, gain-
ing energy every time they cross the
gap between the dees.

portal.

The frequency f at which the proton circulates in the magnetic
field (and that does not depend on its speed) must be equal to
the fixed frequency f of the electrical oscillator:

= fosc (resonance condition).



28.7: The Proton Synchrotron :

At proton energies above 50 MeV, the conventional cyclotron begins to fail.
Also, for a 500 GeV proton in a magnetic field of 1.5 T, the path radius is 1.1
km. The corresponding magnet for a conventional cyclotron of the proper size
would be impossibly expensive.

In the proton synchrotron the magnetic field B, and the oscillator frequency
f.s, INStead of having fixed values as in the conventional cyclotron, are made
to vary with time during the accelerating cycle.

When this is done properly,

(1) the frequency of the circulating protons remains in step with the oscillator
at all times, and

(2) the protons follow a circular—not a spiral—path. Thus, the magnet need
extend only along that circular path, not over some 4x10% m2. The circular
path, however, still must be large if high energies are to be achieved.

The proton synchrotron at the Fermi National Accelerator Laboratory
(Fermilab) in Illinois has a circumference of 6.3 km and can produce protons
with energies of about 1 TeV ( 1012 eV).



Example, Accelerating a Charged Particle in a Synchrotron:

Suppose a cyclotron is operated at an oscillator frequency of
12 MHz and has a dee radius R = 53 cm.

(a) What is the magnitude of the magnetic field needed for
deuterons to be accelerated in the cyclotron? The deuteron
mass is m = 3.34 X 10?7 kg (twice the proton mass).

KEY IDEA

For a given oscillator frequency f,., the magnetic field mag-
nitude B required to accelerate any particle in a cyclotron
depends on the ratio m/lgl of mass to charge for the particle,
according to Eq.28-24 (Ig|B = 2mmfys).

Calculation: For deuterons and the oscillator frequency fo =
12 MHz, we find

2mmfese  (2m)(3.34 X 10777kg)(12 X 10°s71)
g 1.60 X 10~ C
=157T=16T.

Note that, to accelerate protons, B would have to be re-
duced by a factor of 2, provided the oscillator frequency re-
mained fixed at 12 MHz.

(b) What is the resulting kinetic energy of the deuterons?

B

(Answer)

KEY IDEAS

(1) The kinetic energy (3mv?) of a deuteron exiting the cy-
clotron is equal to the kinetic energy it had just before exiting,
when it was traveling in a circular path with a radius approxi-
mately equal to the radius R of the cyclotron dees. (2) We can
find the speed v of the deuteron in that circular path with Eq.
28-16 (r = mv/lg|B).

Calculations: Solving that equation for v, substituting R
for r,and then substituting known data, we find

_ RgB _ (053m)(1.60 X 10" C)(L57T)
m 334 X 10 kg

= 3.99 x 107 m/s.

This speed corresponds to a kinetic energy of
K= %mv2

= 2(3.34 X 1077 kg)(3.99 X 107 m/s)?

=27 X 10712],

or about 17 MeV.

(Answer)



28.8: Magnetic Force on a

Current-Carrying Wire: A force acts on
a current through
a B field.

Fig. 28-14 A flexible wire passes be-
tween the pole faces of a magnet (only the
farther pole face is shown). (a) Without cur-
rent in the wire, the wire is straight. (b) With
upward current, the wire is deflected right-
ward. (¢) With downward current, the de-
flection is leftward. The connections for get-

L] L ]
ting the current into the wire at one end and . ‘ .
N ] ]
out of it at the other end are not shown. 7
=0

(@) (8) (¢)



28.8: Magnetic Force on a
Current-Carrying Wire:

Fig. 28-15 A close-up view of a section
of the wire of Fig. 28-14h. The current direc-
tion is upward, which means that electrons
drift downward. A magnetic field that
emerges from the plane of the page causes
the electrons and the wire to be deflected
to the right.

Consider a length L of the wire in the figure. All
the conduction electrons in this section of wire
will drift past plane xx in a time t =L/vd.

Thus, in that time a charge will pass through that
plane that is given by L
q=1=1—
Vd
. (L .

Fyp = qv;Bsin ¢ = v, B sin 90°

Vg

Fy =iLB.
F_; =il xB (force on a current).
Here L is a length vector that has magnitude L

and is directed along the wire segment in the
direction of the (conventional) current.

If a wire is not straight or the field is not uniform, we can imagine the wire broken up into small straight
segments . The force on the wire as a whole is then the vector sum of all the forces on the segments that
make it up. In the differential limit, we can write 47, = j 4I. x B, and we can find the resultant force
on any given arrangement of currents by integrating Eq. 28-28 over that arrangement.



Example, Magnetic Force on a Wire Carrying Current:

A straight, horizontal length of copper wire has a current
i = 28 A through it. What are the magnitude and direction
of the minimum magnetic field B needed to suspend the
wire—that is, to balance the gravitational force on it? The
linear density (mass per unit length) of the wire is 46.6 g/m.

KEY IDEAS

(1) Because the wire carries a current, a magnetic force ﬁg
can act on the wire if we place it in a magnetic field B.To
balance the downward gravitational force F on the wire, we
want FB to be directed upward (Fig. 28-17). 2) The direction
of Fyis related to the directions of B and the wire’s length

vector L by Eq.28-26 (Fp = iL x B).

Calculations: Because L is directed horizontally (and the
current is taken to be positive), Eq. 28-26 and the right-hand
rule for cross products tell us that B must be horizontal and
rightward (in Fig. 28-17) to give the required upward F,}g

The magmtude of FB is FB iLB sin ¢ (Eq. 28-27).
Because we want FB to balance F we want

iL.Bsin ¢ = mg. (28-29)

where mg is the magnitude of E and m 1s the mass of the wire.

A
Fy
f —
© —2—
mg
v

Fig. 28-17 A wire (shown in cross section) carrying current out
of the page.

We also want the minimal field magmtucle B for Fyto balance
F Thus, we need to maximize sin (,bm Eq. 28-29.To do so, we
set ¢ = 90°, thereby arranging for B to be perpendicular to
the wire. We then have sin ¢ = 1,s0 Eq.28-29 yields

_ mg _ (mlL)g

~ iLsing i
We write the result this way because we know m/L. the linear
density of the wire. Substituting known data then gives us
(46.6 X 1073 kg/m)(9.8 m/s?)

28 A

= 1.6 X 1072T. (Answer)

This is about 160 times the strength of Earth’s magnetic field.

(28-30)

B =



28.9: Torque on a Current Loon:

Fig. 28-18 The elements of an electric
motor. A rectangular loop of wire, carrying a
current and free to rotate about a fixed axis,
is placed in a magnetic field. Magnetic
forces on the wire produce a torque that ro-
tates it. A commutator (not shown) reverses
the direction of the current every half-revo-
lution so that the torque always acts in the
same direction.

The two magnetic forces F and —F produce a torque on the loop, tending to rotate it
about its central axis.



28.9: Torque on a Current Loop:

7 F
X X %X x %X x "l x x x x X X Fas
Side 1 T _t _ -
X X X Side 1 1/‘7
Side 2 »\/ \
i
X Fy <l x X XX X X =t F, x b . 1 =
Side 4 b Side 2
X X X _ \ Side 8
Side 3 Rc:-tation/ /l 5
* b4 b4 * * by ?a- = X b4 * XEX F-'h =
) (c) 3
(a) a (b)

To define the orientation of the loop in the magnetic field, we use a normal vector n that is
perpendicular to the plane of the loop. Figure 28-19b shows a right-hand rule for finding the
direction of n. In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle &
to the direction of the magnetic field.

For side 2 the magnitude of the force acting on this side is F,=ibB sin(90°-#)=ibB cosd =F,.
F, and F, cancel out exactly.

Forces F, and F5 have the common magnitude iaB. As Fig. 28-19c shows, these two forces
do not share the same line of action; so they produce a net torque.

T = (."aB %Sin 9) + ( iaB % Sin 9) = jabB sin @.

For N loops, when A=ab, the area of the loop, the total torque is:
7= N7’ = NiabB sin § = (NiA)B sin 6,



28.10: The Magnetic Dipole Moment, u

Definition: u = NiA (magnetic moment),
Here, N is the number of turns in the coil, i is the current through the coil, and A

Is the area enclosed by each turn of the coil.

Direction: The direction of z is that of the normal vector to the plane of the coil.

. The definition of torque can be rewritten as:
The magnetic moment vector

attempts to align with the

magnetic field. 7= uBsin 6,
B E T = MK X B,
Cb (‘I) Just as in the electric case, the magnetic dipole in an external
= Jf’ | = magnetic field has an energy that depends on the dipole’s
K orientation in the field:
Highest Lowest
energy energy U ( e) _ _ E . g

Fig. 28-20 The orientations of highest o ]
and lowest energy of a magnetic dipole A magnetic d|p0|e has its lowest energy (-,LIB COS O:-,UB)

(here ﬂfofal i;g”ﬁ% cgl_'rjentt_} in afntle]xtel‘l_lﬂl when its dipole moment « is lined up with the magnetic field.
e e the direction afthe o 0 It has its highest energy (-uB cos 180°=+xB) when  is

rent ; gives the direction of the magnetic

dipole moment z via the right-hand rule directed opposite the field.
shown for 7 in Fig. 28-195.



28.10: The Magnetic Dipole Moment, u:

u = NiA (magnetic moment),

U() = —g-B.

From the above equations,
one can see thatthe unit of u
can be the joule per tesla
(J/T), or the ampere—square
meter.

Table 28-2

Some Magnetic Dipole Moments

Small bar magnet 5JT

Earth 8.0 x 102 J/T
Proton 1.4 X 10722 /T
Electron 03 x 1072 J/T




