Chapter 29

Particles and Waves

29.1 Wave Particle Duality

When a beam of electrons is used in a Young's double slit experiment, a fringe pattern occurs, indicating interference effects.

Waves can exhibit particle-like characteristics, and particles can exhibit wave-like characteristics.

29.2 Blackbody Radiation and Planck's Constant

All bodies, no matter how hot or cold, continuously radiate electromagnetic

Electromagnetic energy is

Electromagnetic waves are composed of particle-like entities called *photons.*

$$
E = hf \t\t p = h/\lambda
$$

Experimental evidence that light consists of photons comes from a phenomenon called the *photoelectric effect.*

When light shines on a metal, a photon can give up its energy to an electron in that metal. The minimum energy required to remove the least strongly held electrons is called the *work function.*

Example 2 **The Photoelectric Effect for a Silver Surface**

The work function for a silver surface is 4.73 eV. Find the minimum frequency that light must have to eject electrons from the surface.

$$
hf_o = \underbrace{\text{KE}_{\text{max}}}_{=0 \text{ J}} + W_o
$$

$$
f_o = \frac{W_o}{h} = \frac{(4.73 \text{ eV})(1.60 \times 10^{-19} \text{ J/eV})}{6.626 \times 10^{-34} \text{ J} \cdot \text{s}} = 1.14 \times 10^{15} \text{Hz}
$$

29.4 The Momentum of a Photon and the Compton Effect

The scattered photon and the recoil electron depart the collision in different directions.

Due to conservation of energy, the scattered photon must have a smaller frequency.

This is called the *Compton effect.*

29.4 The Momentum of a Photon and the Compton Effect

Momentum and energy are conserved in the collision.

 $\lambda' - \lambda = \frac{n}{\lambda} (1 - \cos \theta)$ *mc h*

29.4 The Momentum of a Photon and the Compton Effect

Conceptual Example 4 **Solar Sails and the Propulsion of Spaceships**

One propulsion method that is currently being studied for interstellar travel uses a large sail. The intent is that sunlight striking the sail creates a force that pushes the ship away from the sun, much as wind propels a sailboat. Does such a design have any hope of working and, if so, should the surface facing the sun be shiny like a mirror or black, in order to produce the greatest force?

29.5 The de Broglie Wavelength and the Wave Nature of Matter

The wavelength of a particle is given by the same relation that applies to a photon:

 $\lambda = h/p$

de Broglie wavelength

29.5 The de Broglie Wavelength and the Wave Nature of Matter

Neutron diffraction is a manifestation of the wave-like properties of particles.

Example 5 **The de Broglie Wavelength of an Electron and a Baseball**

Determine the de Broglie wavelength of (a) an electron moving at a speed of 6.0x10 \textdegree m/s and (b) a baseball (mass = 0.15 kg) moving at a speed of 13 m/s.

$$
\lambda = h/p = \frac{(6.63 \times 10^{-34} \text{ J/s})}{(9.1 \times 10^{-31} \text{kg})(6.0 \times 10^6 \text{ m/s})} = 1.2 \times 10^{-10} \text{m}
$$

$$
\lambda = h/p = \frac{(6.63 \times 10^{-34} \text{ J/s})}{(0.15 \text{ kg})(13 \text{ m/s})} = 3.3 \times 10^{-34} \text{ m}
$$

29.5 The de Broglie Wavelength and the Wave Nature of Matter

 (b) After 100 electrons

 (c) After 3000 electrons

(d) After 70 000 electrons

Particles are waves of probability.

29.6 The Heisenberg Uncertainty Principle

THE HEISENBERG UNCERTAINTY PRINCIPLE

Momentum and position

 $(\Delta p$ _y (Δy) 4π *h* Δp _y (Δy) \ge

Uncertainty in *y* component of the particle's momentum

Uncertainty in particle's position along the *y* direction

THE HEISENBERG UNCERTAINTY PRINCIPLE

Energy and time

 $(\Delta E)(\Delta t)$ 4π *h* ΔE (Δt) \geq

Uncertainty in the energy of a particle when the particle is in a certain state

time interval during which the particle is in that state

29.6 The Heisenberg Uncertainty Principle

Conceptual Example 7 **What if Planck's Constant Were Large?**

A bullet leaving the barrel of a gun is analogous to an electron passing through the single slit. With this analogy in mind, what would hunting be like if Planck's constant has a relatively large value?

