Chapter 30

Induction and Inductance




30.2: First Experiment:

The magnet's motion
creates a current in
the loop.

Fig. 30-1 An ammeter registers a
current in the wire loop when the magnet
is moving with respect to the loop.

1. A current appears only if there is relative motion
between the loop and the magnet (one must move
relative to the other); the current disappears when
the relative motion between them ceases.

2. Faster motion produces a greater current.

3. If moving the magnet’s north pole toward the
loop causes, say, clockwise current, then moving
the north pole away causes counterclockwise
current.

Moving the south pole toward or away from the
loop also causes currents, but in the reversed
directions.

The current thus produced in the loop is called induced current.



30.2: Second Experiment:

For this experiment we use the apparatus of
Fig. 30-2, with the two conducting loops
close to each other but not touching. If we
close switch S, to turn on a current in the
right-hand loop, the meter suddenly and
briefly registers a current—an induced
current—in the left-hand loop. If we then
open the switch, another sudden and brief
Induced current appears in the left hand

Closing the switch
causes a current in
the left-hand loop.

|00p, but in the OppOSite direction. We get Fig. 30-2 Anammeter registers a cur-
an induced current (and thus an induced rent in the left-hand wire loop just as switch
. . S is closed (to turn on the current in the
emf) Only when the current in the ”ght' right-hand wire loop) or opened (to turn
hand |00p IS Changing (either turning on or off the current in the right-hand loop). No

motion of the coils is involved.

turning off) and not when it is constant
(even if it is large).



30.3: Faraday’s Law of Induction:

—
W An emfis induced in the loop at the left in Figs. 30-1 and 30-2 when the number of

magnetic field lines that pass through the loop is changing.

v

W The magnitude of the emf € induced in a conducting loop is equal to the rate at
which the magnetic flux ®4 through that loop changes with time.

Suppose a loop enclosing an area A is placed in a magnetic field B. Then the magnetic flux through
the loop is

Dy = f B-dA (magnetic flux through arca A).

If the loop lies in a plane and the magnetic field is perpendicular to the plane of the loop, and | fthe

magnetic field is constant, then - ~
oy = BA (B L area A, B uniform).

The SI unit for magnetic flux is the tesla—square meter, which is called the weber (abbreviated Wb):
1 weber=1Wb=1T-m’

E= — djzﬂ (Faraday’s law),




30.3: Faraday’s Law of Induction:

If we change the magnetic flux through a coil of N turns, an induced emf appears
in every turn and the total emf induced in the coil is the sum of these individual in-
duced emfs. If the coil is tightly wound (closely packed),so that the same magnetic flux
@ passes through all the turns, the total emf induced in the coil is

fi(pﬂ
dt

€= —N (coil of N turns). (30-3)
Here are the general means by which we can change the magnetic flux
through a coil:

1. Change the magnitude B of the magnetic field within the coil.

2. Change either the total area of the coil or the portion of that area that lies
within the magnetic field (for example, by expanding the coil or sliding it into
or out of the field).

. Change the angle between the direction of the magnetic field B and the plane
of the coil (for example, by rotating the coil so that field B is first perpendicu-
lar to the plane of the coil and then is along that plane).

'LH



Example, Induced emf in a coil due to a solenoid:

The long solenoid S shown (in cross section) in Fig. 30-3
has 220 turns/cm and carries a current i = 1.5 A; its diam-
eter D is 3.2 cm. At its center we place a 130-turn closely
packed coil C of diameter d = 2.1 cm. The current in the
solenoid is reduced to zero at a steady rate in 25 ms. What
is the magnitude of the emf that is induced in coil C while

the current in the solenoid is changing?
i S

Axtis

Fig. 30-3 A coil Cislocated inside a solenoid S, which
carries current i.

4. The flux through each turn of coil C depends on the area
A and orientation of that turn in the solenoid’s magnetic

field B. Because B is uniform and directed perpendicular
to area A, the flux is given by Eq.30-2 (&5 = BA).

. The magnitude B of the magnetic field in the interior of a so-
lenoid depends on the solenoid’s current i and its number n
of turns per unit length, according to Eq.29-23 (B = ygin).

tn

Calculations: Because coil C consists of more than one
turn, we apply Faraday’s law in the form of Eq. 30-5
(€ = —N d®g/dt), where the number of turns N is 130 and
d®p/dt is the rate at which the flux changes.

Because the current in the solenoid decreases at a
steady rate, flux @ also decreases at a steady rate, and so we
can write d®y/dt as ADz/At. Then, to evaluate Ady, we need
the final and initial flux values. The final flux @y, is zero

KEY IDEAS

1. Because it is located in the interior of the solenoid, coil C lies
within the magnetic field produced by current / in the
solenoid; thus, there is a magnetic flux @, through coil C.

2. Because current i decreases, flux @4 also decreases.
3. As @y decreases, emf € i1s induced in coil C.
because the final current in the solenoid is zero. To find the
initial flux ®5;, we note that area A is %Wdz (= 3.464 X 10~
m?) and the number #» is 220 turns/cm, or 22 000 turns/m.
Substituting Eq. 29-23 into Eq. 30-2 then leads to
Op; = BA = (pgin)A
= (47 X 1077T-m/A)(1.5 A)(22 000 turns/m)
X (3.464 X 10~*m?)
= 1.44 X 107> Wh.

Now we can write

db, Ady; Dy, — Dy,
- At Ar
~ (0= 1.44 X 1075 Wb)
- 25 X 10735

= —576 X 107*Wb/s = =576 X 107* V.

We are interested only in magnitudes; so we ignore the mi-
nus signs here and in Eq. 30-5, writing

d®,

€= N = (130 turns)(5.76 X 107*V)

=75X 1072V =75mV. (Answer)



30.4: Lenz’s Law:
.

W An induced current has a direction such that the magnetic field due to the current
opposes the change in the magnetic flux that induces the current.

__ b The magnet's motion
- »-sﬁjij}% creates a magnetic
l dipole that opposes
W the motion.

Fig. 30-4 Lenz’s law at work. As the
magnet 1s moved toward the loop, a current
is induced in the loop. The current produces
its own magnetic field, with magnetic di-
pole moment W oriented so as to oppose
the motion of the magnet. Thus, the in-
duced current must be counterclockwise

as shown.

Opposition to Pole Movement. The approach of the
magnet’s north pole in Fig. 30-4 increases the
magnetic flux through the loop, inducing a current in
the loop. To oppose the magnetic flux increase being
caused by the approaching magnet, the loop’s north
pole (and the magnetic moment x) must face toward
the approaching north pole so as to repel it. The
current induced in the loop must be counterclockwise
in Fig. 30-4. If we next pull the magnet away from
the loop, a current will again be induced in the loop.
Now, the loop will have a south pole facing the
retreating north pole of the magnet, so as to oppose
the retreat. Thus, the induced current will be
clockwise.



30.4: Lenz’s Law:

Fig. 30-5 The direction of the current i induced in a loop is such
that the current’s magnetic field B;,4 opposes the change in the
magnetic field inducing i. The field is always directed opposite an
increasing field (a) and in the same direction (b) as a decreasing
field B. The curled-straight right-hand rule gives the direction of
the induced current based on the direction of the induced field.

If the north pole of a magnet nears a closed conducting loop with
its magnetic field directed downward, the flux through the loop
increases. To oppose this increase in flux, the induced current i
must set up its own field B, directed upward inside the loop, as
shown in Fig. 30-5a; then the upward flux of the field B,
opposes the increasing downward flux of field . The curled—
straight right-hand rule then tells us that i must be
counterclockwise in Fig. 30-5a.



Example, Induced emf and current due to a changing uniform B field:

Figure 30-6 shows a conducting loop consisting of a half-circle
of radius r = 0.20m and three stralqht sections. The half-
circle lies in a uniform magnetic field B that is directed out
of the page; the field magnitude is given by B = 4.0 +
2.0t + 3.0, with B in teslas and ¢ in seconds. An ideal battery
with emf €., = 2.0 V is connected to the loop. The resistance
of the loop is 2.0 (.

(a) What are the magnitude and direction of the emf ¢,
induced around the loop by field Batr=10s?

Fig. 30-6 A batteryis connected to a conducting loop that includes
a half-circle of radius r lying in a uniform magnetic field. The field is di-
rected out of the page:its magnitude is changing.

o _ d®y  d(BA) _ 4 dB
i dr dr N dt -

Because the flux penetrates the loop only within the half-
circle, the area A in this equation is %’n-rz. Substituting this
and the given expression for B yields

2
amzAi?zqg fumﬂ+zm+am

2

(8.0t + 2.0).

Atr = 10 s, then,

7 (0.20 m)?
2
=5152V~52V.

g = [8.0(10) + 2.0]

(Answer)

Direction: To find the direction of €, ,, we first note that in
Fig. 30-6 the flux through the loop is out of the page and in-
creasing. Because the induced field B, (due to the induced
current) must oppose that increase, it must be into the page.
Using the curled—straight right-hand rule (Fig. 30-5¢), we find
that the induced current is clockwise around the loop, and
thus so is the induced emf &, 4.

(b) What is the current in the loop at¢ = 10 s?

Calculation: The induced emf €, ; tends to drive a current
clockwise around the loop; the battery’s emf €, tends to
drive a current counterclockwise. Because €, is greater
than €, the net emf € _; is clockwise, and thus so is the cur-
rent. To find the current at7 = 10 s, we use Eq.27-2 (i = €/R):

{ = (-Eg'net _ mcl %b’it
R R
SA52V - 20V
= = 1.5 ~ 1.6 A.
200 1.58 A = 1.6 A. (Answer)



Example, Induced emf and current due to a changing nonuniform B field:

Figure 30-7 shows a rectangular loop of wire immersed in
a nonuniform and varying magnetic field B that is perpen-
dicular to and directed into the page. The field’s magni-
tude is given by B = 4¢2x2, with B in teslas, ¢ in seconds,

If the field varies with position,
we must integrate to get the
flux through the loop.

We start with a strip

so thin that we can
approximate the field as
being uniform within it.

Fig. 30-7 A closed conducting loop, of width W and height H,
lies in a nonuniform, varying magnetic field that points directly into
the page. To apply Faraday’s law, we use the vertical strip of height
H, width dx, and area dA.

Calculations: In Fig. 30-7, B is perpendicular to the plane
of the loop (and hence parallel to the differential area
vector dz); so the dot product in Eq. 30-1 gives B dA.
Because the magnetic field varies with the coordinate x but
not with the coordinate y, we can take the differential area
dA to be the area of a vertical strip of height H and width dx
(as shown in Fig. 30-7). Then dA = H dx, and the flux
through the loop is

Dy = fﬁodﬁ' = deA = fBH dy = [4r2x2H dx.

Treating ¢ as a constant for this integration and inserting the
integration limits x = 0 and x = 3.0 m, we obtain

3.0 3 o

x%dx = 4*H T = 721‘2.,

0

D, = 4°H f

0

where we have substituted H = 2.0 m and @y is in webers.

Now we can use Faraday’s law to find the magnitude of € at
any time ¢:

o APy _ d(722)

dt dt
in which € 1s in volts. At r = 0.10 s,

€ = (144 V/s)(0.10s) = 14 V.

= 144,

(Answer)

The flux of B through the loop is into the page in Fig.
30-7 and is increasing in magnitude because B is increasing in
magnitude with time. By Lenz’s law, the field B;,4 of the in-
duced current opposes this increase and so is directed out of
the page. The curled-straight right-hand rule in Fig. 30-5a
then tells us that the induced current is counterclockwise
around the loop, and thus so is the induced emf ‘€.



30.5: Induction and Energy Transfers:

—If the loop is pulled at a | Decreasing the area
constant velocity v, one must R e e decreases the flux,

| % - ceste
apply a constant force F to the b B By el ENC e

loop since an equal and opposite
magnetic force acts on the loop to
oppose it. The power is P=Fv.

—As the loop is pulled, the
portion of its area within the
magnetic field, and therefore the

magnetic flux, decrease. |
ACCOI’diIlg to Faraday’s law, a Fig. 30-8 You pull a closed conducting loop out of a magnetic field at constant

] ) velocity V. While the loop is moving, a clockwise current 7 is induced in the loop, and
current IS prOdUCGd in the |OOp. the loop segments still within the magnetic field experience forces F,, F5,and Fj.

The magnitude of the flux through
the loop is ®; =BA =BLx.

| b !

1D 1 1.
S Therefore, €= -2 = % grv=pBL % = BL,.

dt dt dt
—The induced current is therefore i = Bﬁ"f

. ) 0. B B2l .2y
—The net deflecting force is: F=F =iLBsin9%"=iLB.=—Fp
P F BELZ.P,E
—_— 1"“ —_—

—The power is therefore R



30.5: Induction and Energy Transfers: Eddy Currents
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Fig. 30-10 (a) Asyou pull a solid con-
ducting plate out of a magnetic field, eddy
currents are Induced 1n the plate. A typical
loop of eddy current is shown. (b) A con-
ducting plate is allowed to swing like a pen-
dulum about a pivot and into a region of
magnetic field. As it enters and leaves the
field, eddy currents are induced in the
plate.



30.6: Induced Electric Field:

3 A changing magnetic field produces an electric field.

Copper Circular
ring

O S S 4
x

(a) (b)

—Electric field
lines

(d)

Fig. 30-11 (a) If the magnetic field increases at a steady rate, a constant induced cur-
rent appears, as shown, in the copper ring of radius r.(b) An induced electric field exists
even when the ring is removed; the electric field is shown at four points. (¢) The complete
picture of the induced electric field, displayed as field lines. (d) Four similar closed paths that
enclose identical areas. Equal emfs are induced around paths 1 and 2, which lie entirely within
the region of changing magnetic field. A smaller emf is induced around path 3, which only
partially lies in that region. No net emf is induced around path 4, which lies entirely outside
the magnetic field.



30.6: Induced Electric Fields, Reformulation of Faraday’s Law:

Consider a particle of charge g, moving around the circular path. The work W done on it in
one revolution by the induced electric field is W =¢&g,,, where &is the induced emf.

From another point of view, the work is

—

W = f F-ds = (q,E)(2mr).

Here where g,E is the magnitude of the force acting on the test charge and 2zr is the
distance over which that force acts.

—> ¢ =2mwE.
Ingeneral, v, _ fﬁ F-ds = f}'ﬂfﬁ E-ds. — € = ﬁ; E-ds.

- 1D
____ jEE'df = = EdrB (Faraday’s law).




30.6: Induced Electric Fields, A New Look at Electric Potential:

e
W Electric potential has meaning only for electric fields that are produced by static
charges; it has no meaning for electric fields that are produced by induction.

When a changing magnetic flux is present, the integral % E-ds
IS not zero but Is d @/dt.

Thus, assigning electric potential to an induced electric field
leads us to conclude that electric potential has no meaning for
electric fields associated with induction.



Example, Induced electric field from changing magnetic field:

In Fig. 30-11b,take R = 8.5 cm and dB/dt = 0.13 T/s.

(a) Find an expression for the magnitude E of the induced
electric field at points within the magnetic field, at radius r
from the center of the magnetic field. Evaluate the expres-
sion for r = 5.2 cm.

Circular Fig. 30-11

path 4

(b)

Calculations: To calculate the field magnitude E, we ap-
ply Faraday’s law in the form of Eq. 30-20. We use a circu-
lar path of integration with radius r = R because we want
E for points within the magnetic field. We assume from the
symmetry that E in Fig. 30-11b is tangent to the circular
path at all points. The path vector 5 is also always tangent
to the circular path; so the dot product E-ds in Eq. 30-20
must have the magnitude E ds at all points on the path. We
can also assume from the symmetry that E has the same
value at all points along the circular path. Then the left side
of Eq. 30-20 becomes

j(; E-ds= j(; Eds = Eﬁ(; ds = EQ2mr). (30-23)

(The integral ¢ ds is the circumference 27 of the circular
path.)

®, = BA = B(7r?). (30-24)

Substituting this and Eq. 30-23 into Eq. 30-20 and dropping
the minus sign, we find that

dB
EQmr) = (mr?) —
dt
or E = % ‘fi‘? . (Answer) (30-25)

Equation 30-25 gives the magnitude of the electric field at
any point for which » = R (that is, within the magnetic field).
Substituting given values yields, for the magnitude of £ at
r =15.2cm,

e (5.2 X 1072 m)
2
= (0.0034 V/im = 3.4 mV/m.

(0.13 T/s)

(Answer)



Example, Induced electric field from changing magnetic field, cont.:

(b) Find an expression for the magnitude E of the induced
electric field at points that are outside the magnetic field, at
radius r from the center of the magnetic field. Evaluate the ex-
pression for r = 12.5 cm.

Circular
»ath
P 4

Fig. 30-11

(b)

E(mV,/m)
iy

2

0 10 20 30

r (cm)

40

Fig. 30-12 A plot of the induced electric field E(r).

Calculations: We can now write
&y = BA = B(wR?). (30-26)

Substituting this and Eq. 30-23 into Eq. 30-20 (without the
minus sign) and solving for E yield
o R_z dB '
2r dt

Because E is not zero here, we know that an electric field is
induced even at points that are outside the changing mag-
netic field, an important result that (as you will see in
Section 31-11) makes transformers possible.

With the given data, Eq. 30-27 yields the magnitude of
Eatr=12.5cm:

(Answer) (30-27)

(8.5 X 1072 m)?
(2)(12.5 X 102 m)
=38 X 107 V/m = 3.8 mV/m.

Equations 30-25 and 30-27 give the same result for
r = R. Figure 30-12 shows a plot of E(r). Note that the inside
and outside plots meet at r= R.

E-= (0.13 T/s)

(Answer)



30.7: Inductors and Inductance:

The crude inductors with which Michael
Faraday discovered the law of induction. In
those days amenities such as insulated wire
were not commercially available. It is said
that Faraday insulated his wires by wrap-
ping them with strips cut from one of his
wife’s petticoats. (The Royal
Institution/Bridgeman Art Library/NY)

An inductor (symbol M) can be

used to produce a desired magnetic
field.

If we establish a current i in the
windings (turns) of the solenoid
which can be treated as our inductor,
the current produces a magnetic flux
@ through the central region of the
inductor.

The inductance of the inductor is then

N
L = : (inductance defined)
[

The SI unit of inductance is the tesla—
square meter per ampere (T m?/A).
We call this the henry (H), after
American physicist Joseph Henry,



30.7: Inductance of a Solenoid:

Consider a long solenoid of cross-sectional area A, with number of turns N, and of
length I. The flux is N®y = (nl)(BA),

Here n is the number of turns per unit length.

The magnitude of B is given by:

B = Ju,{}i'.‘”..
Therefore, ;- N®y _ ()(BA) _ (nl)(poin)(A)
l ] l
= uon’lA.

The inductance per unit length near the center is therefore:

o= won*A (solenoid).

po =47 X 107" T-m/A

Here, = 47 X 107 H/m.



30.8: Self-Induction:

a An induced emf €; appears in any coil in which the current 1s changing.

This process (see Fig. 30-13) is called self-induction, and the emf that appears is
called a self-induced emf. It obeys Faraday’s law of induction just as other

induced emfs do.

S AR N®, = Li.

¥

| gl+
|

(3] — - .
L dt

i "ES’ B A(ND,)

Fig. 30-13 Ifthe current in a coil 1s

changed by varying the contact position on o di B

a variable resistor, a self-induced emf €, ©; = — L (self-induced emf).
| : self-induced emf{%, dr

will appear in the coil while the current is

changing.



30.9: RL Circuits:
)

W Initially, an inductor acts to oppose changes in the current through it. A long time

later, 1t acts like ordinary connecting wire.

If we suddenly remove the emf from this same
circuit, the charge does not immediately fall to
zero but approaches zero in an exponential

fashion:

)
f"_' 1]

R

et = fgfi‘_” T (decay of current).

Fig. 30-15 An RL circuit. When switch [ =
S is closed on a, the current rises and ap-
proaches a imiting value €/R.

L‘éj
o —Rt/L
i=— (1 —e )\
R
i=—(1— e ) (rise of current).
R
L
T — —— (time constant).
R



30.9: RL Circuits:

The resistor's potential
difference turns on.
The inductor's potential

difference turns off. o -
Fig. 30-17 The variation with time of

ol __ (a) Vg, the potential difference across the
3 resistor in the circuit of Fig. 30-16, and (b)
= G V;, the potential difference across the in-
=y ductor in that circuit. The small triangles

2 | represent successive intervals of one indu

. tive time constant 7; = L/R.The figureis
¢ (ms) plotted for R = 2000 (}, . = 4.0 H, and

{ﬁ] % = 10 1%-'1

e
[ Rl
= P
=
w2l




Example, RL circuit, immediately after switching and after a long time:

Figure 30-18a shows a circuit that contains three identical
resistors with resistance R = 9.0 (), two identical inductors
with inductance L. = 2.0 mH, and an ideal battery with emf
€=18V.

(a) What is the current / through the battery just after the
switch is closed?

KEY IDEA

Just after the switch is closed, the inductor acts to oppose a
change in the current through it.

Calculations: Because the current through each inductor is
zero before the switch is closed, it will also be zero just after-
ward. Thus, immediately after the switch is closed, the induc-
tors act as broken wires, as indicated in Fig. 30-18b. We then
have a single-loop circuit for which the loop rule gives us

€—iR=0.
Substituting given data, we find that
€ 18V

] = — =

R 9.0

= 2.0 A. (Answer)

(b) What is the current i through the battery long after the
switch has been closed?

KEY IDEA

Long after the switch has been closed, the currents in the cir-
cuit have reached their equilibrium values, and the inductors
act as simple connecting wires, as indicated in Fig. 30-18c.

|
+ -
fgi =L R% = Ré
R L R
—/: l
(@) & Initially, an inductor
acts like broken wire.
R

|I|+
|I|+

"3 s

(c) . (d)
Long later, it acts

like ordinary wire.

Fig. 30-18 (a)A multiloop RL circuit with an open switch. (b)
The equivalent circuit just after the switch has been closed. (¢) The
equivalent circuit a long time later. (d ) The single-loop circuit that
is equivalent to circuit (¢).

Calculations: We now have a circuit with three identical
resistors in parallel; from Eq.27-23, their equivalent resistance
is Roq = R/I3 = (9.0Q)/3 = 3.0 (2. The equivalent circuit shown

in Fig. 30-184d then yields the loop equation € — iR, = 0,0r
€ 18V
[ = RL =300 6.0 A. (Answer)

eq



Example, RL circuit, during a transition:

A solenoid has an inductance of 53 mH and a resistance of 0.37
(). If the solenoid is connected to a battery, how long will the
current take to reach half its final equilibrium value? (This is a
real solenoid because we are considering its small, but nonzero,
internal resistance. )

KEY IDEA

We can mentally separate the solenoid into a resistance and
an inductance that are wired in series with a battery, as in
Fig. 30-16. Then application of the loop rule leads to
Eq. 30-39, which has the solution of Eq. 30-41 for the current
11n the circuit.

Calculations: According to that solution, current ¢ in-
creases exponentially from zero to its final equilibrium
value of é/R. Let t, be the time that current  takes to reach
half its equilibrium value. Then Eq. 30-41 gives us

18 _%

2 R R
We solve for ¢, by canceling é/R, isolating the exponential,
and taking the natural logarithm of each side. We find

L 53X 107°H
fhy = TLln2—§ln2 = T30 In2

(1 _ e_‘nfTL)'

=0.10s. (Answer)



30.10: Energy Stored in a Magnetic Field: di

X

o

Fig. 30-16 The circuit of Fig. 30-15
with the switch closed on a. We apply
the loop rule for the circuit clockwise,

starting at x.

€= L—+ IR,
dt

y
= Li%t 4 2R
dt

This is the rate at which magnetic potential energy
Ug is stored in the magnetic field.

Uy i
f dUy = f Lid
0 0

_ 1
Up =1

(magnetic energy),

This represents the total energy stored by an inductor L carrying a current i.



Example, Energy stored in a magnetic field:

A coil has an inductance of 53 mH and a resistance of
0.35 Q.

(a) If a 12 V emf is applied across the coil, how much en-
ergy is stored in the magnetic field after the current has built
up to its equilibrium value?

KEY IDEA

The energy stored in the magnetic field of a coil at any time
depends on the current through the coil at that time, accord-
ing to Eq.30-49 (Uy = 1L{2).

Calculations: Thus, to find the energy Ujp, stored at
equilibrium, we must first find the equilibrium current. From
Eq. 30-41, the equilibrium current is

€ \"
i, = J; = 02,25 o = 3M43A. (30-51)
Then substitution yields
Us.. = 2 LiZ = (3)(53 X 1072 H)(34.3 A)?
= 311J. (Answer)

(b) After how many time constants will half this equilib-
rium energy be stored in the magnetic field?

Calculations: Now we are being asked: At what time ¢ will

the relation .
UB = b UBm

be satisfied? Using Eq. 30-49 twice allows us to rewrite this
energy condition as

t2 = GiLi

: Ly,
o " ( V2 )
This equation tells us that, as the current increases from its ini-
tial value of O to its final value of i,, the magnetic field will
have half its final stored energy when the current has in-
creased to this value. In general, we know that i is given by Eq.
30-41,and here i, (see Eq.30-51) is €/R; so Eq. 30-52 becomes

(30-52)

1 — e m) = .
RO TR
By canceling €/R and rearranging, we can write this as
e fn=1-— S 0.293,
V2 |
which yields
= —1n0293 = 1.23
bE
or t=127;. (Answer)

Thus, the energy stored in the magnetic field of the coil by
the current will reach half its equilibrium value 1.2 time
constants after the emf is applied.



30.11: Energy Density of a Magnetic Field:

Consider a length | near the middle of a long solenoid of cross-sectional area A carrying
current i; the volume associated with this length is Al.

The energy Ug stored by the length | of the solenoid must lie entirely within this volume
because the magnetic field outside such a solenoid is approximately zero. Also, the stored
energy must be uniformly distributed within the solenoid because the magnetic field is
(approximately) uniform everywhere inside.

Thus, the energy stored per unit volume of the field is

Uy
Up = ——
oAl
Uy = 3L72,
Up = —— = ———= 5oh"i",
BT2AL 1 24 2HOTT
BE
g = (magnetic energy density).

2pLg




30.12: Mutual Induction:
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Fig. 30-19 Mutual induction. (a) The ;\ [y}

magnetic field B, produced by current i in
coil 1 extends through coil 2. If i, 1s varied
(by varying resistance R),an emfis induced

1
in coil 2 and current registers on the meter /
connected to coil 2. (b) The roles of the
coils interchanged.
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The mutual inductance M,, of coil 2 with respect to coil 1 is defined as M,, = *E
1
dip  ddy
My =N

The right side of this equation is, according to Faraday’s law, just the magnitude of the emf
E, appearing in coil 2 due to the changing current in coil 1.

(ifl
C_E)n = _Iwﬁ -
- 2 de
. . ) (iiﬂ
Similarly, ¢, = —Mm,, T
o




Example, Mutual Inductance Between Two Parallel Coils:

Figure 30-20 shows two circular close-packed coils, the where B, is the magnitude of the magnetic field at points
smaller (radius R,, with N, turns) being coaxial with the within the small coil due to the larger coil and A, (= 7 R3) is
larger (radius R, with N, turns) and in the same plane. the area enclosed by the turn. Thus, the flux linkage in the

(a) Derive an expression for the mutual inductance M for smaller coil (with its /V, turns) is

this arrangement of these two coils, assuming that R, > R,. N,®,, = N,B,A,. (30-67)

To find B, at points within the smaller coil, we can use
Eq.29-26,

ol R?
2(R2 4 z2)3.f'2"-

B(z) =

with z set to 0 because the smaller coil is in the plane of the
larger coil. That equation tells us that each turn of the larger
coil produces a magnetic field of magnitude w.i,/2R; at
points within the smaller coil. Thus, the larger coil (with its
N, turns) produces a total magnetic field of magnitude

Moli
B; =N 30-68
"11 Iy at points within the smaller coil.

Substituting Eq. 30-68 for B, and 7R3 for A, in Eq.

Fig. 30-20 A small coil is located at the center of a large 30-67 yields

coil. The mutual inductance of the coils can be determined by

sending current i, through the large coil. N> @, = TN N, R3 i
2P = .
2R,
p = N Pa (30-66)
oo Substituting this result into Eq. 30-66, we find
The flux ®,, through each turn of the smaller coil is, 2
from Eq. 30-2, p o= DoPo _ TRy L ver) (30-69)

D,, = B,A,, ! P



Example, Mutual Inductance Between Two Parallel Coils, cont.:

1,

+17-

Fig. 30-20 A small coil is located at the center of a large
coil. The mutual inductance of the coils can be determined by
sending current 7, through the large coil.

(b) What is the value of M for N, =N, = 1200 turns,
R, =1.1cm,and R, = 15cm?

Calculations: Equation 30-69 yields

(7)(47 X 10~7 H/m)(1200)(1200)(0.011 m)?
(2)(0.15 m)

M:

=229 X 10*H = 2.3 mH. (Answer)

Consider the situation if we reverse the roles of the two
coils— that is, if we produce a current i, in the smaller coil
and try to calculate M from Eq. 30-57 in the form

MNP,

L
The calculation of @, (the nonuniform flux of the smaller
coil’'s magnetic field encompassed by the larger coil) is not
simple. If we were to do the calculation numerically using

a computer, we would find M to be 2.3 mH, as above! This
emphasizes that Eq. 30-63 (M,, = M, = M) is not obvious.

M =



