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31.2: LC Oscillations, Qualitatively:

In RC and RL circuits the charge, current, and potential
difference grow and decay exponentially.

On the contrary, in an LC circuit, the charge, current, and
potential difference vary sinusoidally with period T and
angular frequency .

The resulting oscillations of the capacitor’s electric field
and the inductor’s magnetic field are said to be
electromagnetic oscillations.



31.2: LC Oscillations, Qualitatively:

a2

The energy stored in the electric field of the capacitor at any time is  Ur = F—

2C
charge on the capacitor at that time. .

The energy stored in the magnetic field of the inductor at any time is ¢, = Lz"
current through the inductor at that time,

where q is the

_where i iIs the

As the circuit oscillates, energy shifts back and forth from one type of stored energy to the other, but

the total amount is conserved.
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31.2: LC Oscillations:
The time-varying potential difference (or voltage) v,
that exists across the capacitor C is

NN/ o= (L)q

Il ~
< C
(@) = \/ To measure the current, we can connect a small resistance R in
_a c e goac e g series with the capacitor and inductor and measure the time-
? LN o varying potential difference v acrossit: = jR.
- r? NS

Fig. 31-2 (a) The potential difference
across the capacitor of the circuit of Fig.
31-1 as a function of time. This quantity is
proportional to the charge on the capaci-
tor. (b) A potential proportional to the cur-
rent in the circuit of Fig. 31-1. The letters re-
fer to the correspondingly labeled ) )
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31.3: The Electrical-Mechanical Analogy:

One can make an analogy between the oscillating LC system and an oscillating block—spring

system.

Two kinds of energy are involved in the block—spring system. One is potential energy of the

compressed or extended spring; the other is kinetic energy of the moving block.

Here we have the following analogies:

q corresponds to x, 1/C corresponds to k,
i corresponds tov, and L corresponds to m.

Comparison of the Energy in Two Oscillating Systems

Block—Spring System L C Oscillator
Element Energy Element Energy
Spring F'Dtential.%!{Jr2 Capacitor Electrical.lz(1;’(.”](;2
Block Kinetic,3mv? Inductor Magnetic, 3 Li*
v = dx/dt i = dqldt

The angular frequency of oscillation for an ideal (resistanceless) LC is:

0= (LC circuit).

1
VLC



31.4: LC Oscillations, Quantitatively:
The Block-Spring Oscillator:

( U=U,+ U = %sz + %kxz,
dU d dv dx
I = I (% mv? + %k:-:z) = m VT; -+ k:-:d—:: = (.

2.
1 d .:’ 4 hky =0 == x=XcosS(wl+ @) (displacement)
dt® '

The LC Oscillator:

( U=Ug+ Up=—"5"+55-_

dU_d(m qg)_ . di g dq
a  a\ 2 Tac)Tl =0

2 -
( L d7q + l qg =0 (LC oscillations).

( dt? C

dq

q = Q cos(wt + ¢) (charge),™= [ = —— = —wQ sin(wf + ¢) (current).

dt

[ = wQ,  w— i = —Isin(wt + ¢@).




31.4: LC Oscillations, Quantitatively:

Angular Frequencies:

- = —w*Q cos(wt + ¢).

But L T é,q =0  (LCoscillations).

- —Lw?0 cos(wt + ¢) + %Q cos(wt + ¢p) = 0.

‘ I \
- w—m.




31.4: LC Oscillations, Quantitatively:

The electrical energy stored in the LC circuit at

time t s,
q° 0?2 , The electrical and magnetic
Up = 2°C  ac 8 (wf + ). gnergies vary but the total
Is constant.

The magnetic energy is:

@ U(= Up+ Ug)
: 2CN N /N /\N/\
Up = sLi* = JLo*Q?sinX(wt + ¢). i
p U (1)
EG E
But 1 (LC cireuit) g -
w = circult ). =
VLC =1 Uy (1)
0 0 T/2 T
Therefore Up = -~ sin*(wf + ¢). -
2C Time
Fig. 31-4 The stored magnetic
energy and electrical energy in the
Note that _ circuit of Fig. 31-1 as a function of
*The maximum values of Ug and Ug are both time. Note that their sum remains con-
Q?/2C. stant. T'is the period of oscillation.

At any instant the sum of Ug and Uy is equal to
Q?/2C, a constant.
*When Ug Is maximum,Uyg is zero, and conversely.



Example, LC oscillator, potential charge, rate of current change

A 1.5 uF capacitor is charged to 57 V by a battery, which is
then removed. At time r=0,a 12 mH coil is connected in series
with the capacitor to form an LC oscillator (Fig. 31-1).

(a) What is the potential difference v, (7) across the inductor

as a function of time?
Calculations: At any time ¢ during the oscillations,

the loop rule and Fig. 31-1 give us
vi(t) = vel(1); (31-18)

that is, the potential difference v, across the inductor must
always be equal to the potential difference ve across the
capacitor,so that the net potential difference around the circuit
is zero. Thus, we will find v;(¢) if we can find v(f), and we can
find ve(r) from g(r) with Eq.25-1 (¢ = CV)).

Because the potential difference ve(f) 1S maximum
when the oscillations begin at time ¢ = 0, the charge g on the
capacitor must also be maximum then. Thus, phase constant
¢ must be zero; so Eq.31-12 gives us

q = Q cos wt. (31-19)
% = oS wt,
ve = Ve cos o, (31-20)

v; = V-cos wt. (31-21)

1 1

VLC  [(0.012 H)(1.5 X 10°¢F)]*®
= 7454 rad/s = 7500 rad/s.

Thus, Eq. 31-21 becomes
vy = (57 V) cos(7500 rad/s)z. (Answer)

(b) What is the maximum rate (di/dt),,, at which the cur-

rent ; changes in the circuit?
Calculations: Taking the derivative, we have
di d
— = — (—wQ sin wt) = —®’Q cos wt.
dt dt (-eQ ) Q

We can simplify this equation by substituting CV for Q
(because we know C and V- but not Q) and 1/VLC for w
according to Eq. 31-4. We get

j; = — LIC CVecos ot = —% COS wf.
This tells us that the current changes at a varying (sinusoidal)
rate, with its maximum rate of change being
Ve STV

L  0012H

= 4750 A/s =~ 4800 AJs. (Answer)



31.5: Damped Oscillations in an RLC Circuit:

Fig. 31-5 A series RLC circuit. As the
charge contained in the circuit oscillates
back and forth through the resistance, elec-
tromagnetic energy is dissipated as thermal
energy, damping (decreasing the amplitude
of) the oscillations.



31.5: Damped Oscillations in an RLC Circuit:

IS: = U+ Up = — |
Analysis U= U+ Ug > >C

dU — di q dq
m Lt R

+
|

d d |
- drg + R df t 9= 0  (RLCcircuit),

) ;= Qe RP2Lcos(w't + ).

o' = Ve? — (RR2L),

Where
And w=1VLC
2 ,—Ril2L , ' 2 2
q [Qe cos(w't + ¢)] _ Q e RIL cos(w't + @)

— . = =
Eac 2C 2C



Example, Damped RLC Circuit:

Damped RLC circuit: charge amplitude

A series RLC circuit has inductance L = 12 mH, capaci-
tance C = 1.6 uF, and resistance R = 1.5 ) and begins to os-
cillate at time r = 0.

(a) At what time ¢ will the amplitude of the charge oscilla-
tions in the circuit be 50% of its initial value? (Note that we
do not know that initial value.)

KEY IDEA

The amplitude of the charge oscillations decreases exponen-
tially with time ¢: According to Eq. 31-25, the charge ampli-
tude at any time 7is Qe "L in which Q is the amplitude at
time ¢ = 0.

Calculations: We want the time when the charge ampli-
tude has decreased to 0.50Q. that is, when

Qe R2L = ().500.

We can now cancel Q (which also means that we can answer
the question without knowing the initial charge). Taking the
natural logarithms of both sides (to eliminate the exponen-
tial function), we have

~—— =1n0.50.
S = n0.50

Solving for ¢ and then substituting given data yield

2L (2)(12 x 1073 H)(In 0.50)
= -~ 1n050 = —
t 10050 =0

=0.0111s =11 ms. (Answer)

(b) How many oscillations are completed within this time?

KEY IDEA

The time for one complete oscillation is the period T =
27w, where the angular frequency for LC oscillations is
given by Eq. 31-4 (w = 1/VLC).

Calculation: In the time interval Ar = 0.0111 s, the number
of complete oscillations is

Ar At
T 27\ LC
_ 0.0111's ~13
2a[(12 X 1073 H)(1.6 X 107° F)]” h
(Answer)

Thus, the amplitude decays by 50% in about 13 complete
oscillations. This damping is less severe than that shown in
Fig. 31-3, where the amplitude decays by a little more than
50% in one oscillation.



31.6: Alternating Current:

s

€ = €,,sin wyt.

i = Isin(wygt — ).

Fig. 31-6 The basic mechanism of an
alternating-current generator is a conduct-
ing loop rotated in an external magnetic
field. In practice, the alternating emf in-
duced in a coil of many turns of wire 1s
made accessible by means of slip rings at-
tached to the rotating loop. Each ring 1s
connected to one end of the loop wire and
is electrically connected to the rest of the
generator circuit by a conducting brush
against which the ring slips as the loop
(and 1t) rotates.

@y 1s called the driving angular frequency, and 1 is the amplitude of the driven current.



31.7: Forced Oscillations:

Fig. 31-7 A single-loop circuit contain-

— ing a resistor, a capacitor, and an inductor.
VWW— A generator, represented by a sine wave In
R : a circle, produces an alternating emf that
cgi @ C== ll establishes an alternating current: the di-
L rections of the emf and current are indi-
00— cated here at only one instant.

a Whatever the natural angular frequency w of a circuit may be, forced oscillations
of charge, current, and potential difference in the circuit always occur at the driving

angular frequency w,.



31.8: Three Simple Circuits
I. A Resistive Load:

‘Eg @ R l*.R ‘{R

Fig. 31-8 A resistoris connected across an
alternating-current generator.

€ — Vp = 0.
VR - %m 511"1 {Uﬂrﬁ = VR Sill ﬂ.i'df.

: VR VR :
."R — — — SIn Eﬂﬂr-r».

R R

— ‘{R Sill(u}df — (b},

For a purely resistive load, the phase constant ¢= 0°.



31.8: Three Simple Circuits:
I. A Resistive Load:

For a resistive load,
the current and potential
difference are in phase. Rotation of

_ ) phasors at
Vp, Ip  0=0"=0rad rate @,
| IR | -

Ip - | Ry———————-————
/ Ip
VR
Ve Hf | ———— 3>
" VR | Vi
| L, w,t

0 T/2 T
| | “In phase” means

|

| |

| |

that they peak at
the same time.

T—Irrs.t::?u'lts.4T

(a) represented in (b) (b)

Fig. 31-9 (a)The current iy and the potential difference v, across the resistor are plotted on
the same graph, both versus time 7. They are in phase and complete one cycle in one period T.(b)
A phasor diagram shows the same thing as (a).



Example, Purely resistive load: potential difference and current

In Fig. 31-8, resistance R is 200 ) and the sinusoidal alter-
nating emf device operates at amplitude €,, = 36.0 V and
frequency f; = 60.0 Hz.

(a) What is the potential difference vg(r) across the resistance
as a function of time 7, and what is the amplitude Vi of vg(r)?

KEY IDEA

In a circuit with a purely resistive load, the potential difference
vg(t) across the resistance is always equal to the potential differ-
ence é(t) across the emf device.

Calculations: Here we have vg(r) = €(t) and V=%,
Since €,, 1s given, we can write

Ve=%, =360V. (Answer)
To find vg(1), we use Eq. 31-28 to write
ve(t) = €(t) = €, sin w,t (31-34)
and then substitute €,, = 36.0 V and
wy = 27f, = 2m(60 Hz) = 1207
to obtain
ve = (36.0 V) sin(12077). (Answer)

We can leave the argument of the sine in this form for con-
venience, or we can write it as (377 rad/s)t or as (377 s~ ).

(b) What are the current ig(f) in the resistance and the
amplitude I of ig(1)?

KEY IDEA

In an ac circuit with a purely resistive load, the alternating
current ig(f) in the resistance is in phase with the alternating po-
tential difference vg(f) across the resistance; that is, the phase
constant ¢ for the current is zero.

Calculations: Here we can write Eq.31-29 as

i = IR Sin(wdf - (,b) = IR sin wyl. (31-35)
From Eq.31-33, the amplitude /I is
Ve 360V _
Iy = R - om0a 0.180 A. (Answer)

Substituting this and o, = 27f; = 1207 into Eq. 31-35, we
have

ip = (0.180 A) sin(120771). (Answer)



31.8: Three Simple Circuits:
Ii. A Capacitive Load:

€ i @ C i‘; c ""1(:

Fig. 31-10 A capacitor is connected
across an alternating-current generator.

VC' = VC‘ Sin {Udf..

e = (__.‘l"(_-' = CV(‘ Sil‘l {,Udﬂ

) dq
Ic = le _ wy CVe cos wyt.
dt
I »
Xe = (capacitive reactance).
ﬂ:]dC

Xc Is called the capacitive reactance of a capacitor. The Sl
unit of X is the ohm, just as for resistance R.



31.8: Three Simple Circuits:
Ii. A Capacitive Load:

For a capacitive load, the
current leads the potential

difference by 90°.
Ve, i _ Rotation of
| | I ——ic phasors at
:} I 0=-90"=-m/2rad I rate @,
= NeYe | e __
C \ | E V(
! | /' ; |0t
0 1/2 T
1 | [T n
| i | Leads” means that the
| | current peaks at an
| | o
T l earlier time than the
Instants potential difference.
represented in (b)
(a) (b)

COS wyt = sin(wyt + 907).

.

o = (—) sin(w,t + 90°).
Xe l

flc — fCSII'l(wdT - (b)..

4

Ve=1cXe (capacitor).

Fig. 31-11 (a) The current in the capacitor leads the voltage by 90° (= #/2 rad). (b) A

phasor diagram shows the same thing.



Example, Purely capacitive load: potential difference and current

In Fig. 31-10, capacitance C is 15.0 uF and the sinusoidal
alternating emf device operates at amplitude €,, = 36.0 V
and frequency f; = 60.0 Hz.

(a) What are the potential difference v.(f) across the
capacitance and the amplitude V¢ of v(1)?

KEY IDEA

In a circuit with a purely capacitive load, the potential differ-
ence v(1) across the capacitance is always equal to the potential
difference €(r) across the emf device.

Calculations: Here we have v.(t) = €é(r) and V.= €,
Since €,, 1s given, we have

Ve=%,=360V. (Answer)
To find v(7), we use Eq. 31-28 to write
ve(r) = €(t) = €, sin wyt. (31-43)

Then, substituting €,, = 36.0 V and o, = 27f, = 1207 into
Eq.31-43, we have

ve = (36.0 V) sin(12077).

(b) What are the current i(r) in the circuit as a function of
time and the amplitude /- of ic(7)?

(Answer)

KEY IDEA

In an ac circuit with a purely capacitive load, the alternating
current ir(¢) in the capacitance leads the alternating poten-
tial difference v(t) by 90°; that is, the phase constant ¢ for
the current is —90°, or —77/2 rad.

Calculations: Thus, we can write Eq.31-29 as
ic = Iosin(wyt — @) = I-sin(w,yt + 72). (31-44)

We can find the amplitude /- from Eq. 31-42 (Ve = [ X() it
we first find the capacitive reactance X From Eq. 31-39
(X¢ = VwyC),with w; = 27f,;, we can write

1 1
X. = —
€7 2mf,C  (2m)(60.0 Hz)(15.0 X 107°F)
= 177 Q.

Then Eq. 31-42 tells us that the current amplitude 1s

Ve 36.0V
]C - —
Xe 177 Q)
Substituting this and w,; = 27f, = 1207 into Eq. 31-44, we
have

= 0.203 A.

(Answer)

ic = (0.203 A)sin(1207t + 7/2). (Answer)



31.8: Three Simple Circuits:
lii. An Inductive Load:

=

%t @ L lff, v

Fig. 31-12 Aninductor is connected
across an alternating-current generator.

vy = V sin w,t, v = L (j;;‘ :
(j;: = If Sin wyt.
i = jdiL = %J SIn w,t dt = —( L:;i ) COS wyl.
X; = wyL (inductive reactance).
i = (%) sin(w,t — 90°). i; = I; sin(w,t — @),

VL = ILXL (inductor).

The value of X, the inductive resistance, depends on the driving angular frequency ;.
The unit of the inductive time constant t, indicates that the SI unit of X, is the ohm.



31.8: Three Simple Circuits:
lii. An Inductive Load:

For an inductive load,
the current lags the

potential difference
by 90°.

Vp, 1,
¢0=+90"=+m/2 rad

I
I
|
Vi I
|
I

|
|
Vir
I 4 Js
/NN
0/ 172 T

T— Ins.t‘amts.4

represented in (b)

t

v

Rotation of
\ phasors at
rate @
.V d

v

Iy !

(&)

‘Lags” means that the
current peaks at a
later time than the
potential difference.

Fig. 31-13 (a) The current in the induc-
tor lags the voltage by 90° (= #/2 rad). (b)
A phasor diagram shows the same thing.



Example, Purely inductive load:
potential difference and current

In Fig. 31-12, inductance L is 230 mH and the sinusoidal
alternating emf device operates at amplitude €,, = 36.0 V
and frequency f; = 60.0 Hz.

(a) What are the potential difference v, (r) across the induc-
tance and the amplitude V; of v;(¢)?

KEY IDEA

In a circuit with a purely inductive load, the potential dif-
ference v, (¢) across the inductance is always equal to the
potential difference €(r) across the emf device.

Calculations: Here we have v, () = €é(r) and V, =¢,,.
Since €, 1s given, we know that

V, =%, =360 V. (Answer)
To find v, (t), we use Eq. 31-28 to write
vi(t) = €(t) = €, sin w,t. (31-53)

Then, substituting €,, = 36.0 V and w, = 27f, = 1207 into

Eq.31-53, we have
vp = (36.0 V) sin(12077). (Answer)

(b) What are the current i, (f) in the circuit as a function of
time and the amplitude [; of i;(7)?

=~

L l?}. v

Fig. 31-12 An inductor is connected
across an alternating-current generator.

KEY IDEA

In an ac circuit with a purely inductive load, the alternating
current /; (¢) in the inductance lags the alternating potential dif-
ference v, (¢) by 90°. (In the mnemonic of the problem-solving
tactic, this circuit is “positively an EL[ circuit,” which tells us
that the emf FE leads the current / and that ¢ is positive.)

Calculations: Because the phase constant ¢ for the
current is +90°, or +7/2 rad, we can write Eq. 31-29 as

i; = I; sin(wyt — ¢) = I; sin(wyt — 72). (31-54)

We can find the amplitude /; from Eq.31-52 (V, = [, X;) if
we first find the inductive reactance X;. From Eq. 31-49
(X1 = wyl.).with w; = 277f,;, we can write
X, = 2mf,L = (2m)(60.0 Hz)(230 X 1073 H)
= 86.7 Q).

Then Eq. 31-52 tells us that the current amplitude is

V, 360V
X,  86.70Q

Substituting this and @,; = 27f; = 1207 into Eq. 31-54, we
have

I = = 0415 A.

(Answer)

i; = (0415 A) sin(1207t — 7/2). (Answer)



31.8: Three Simple Circuits:

Table 31-2

Phase and Amplitude Relations for Alternating Currents and Voltages

Circuit Resistance Phase of Phase Constant Amplitude
Element Symbol or Reactance the Current (or Angle) ¢ Relation
Resistor R R [n phase with v, 0°(=0rad) Ve=1R
Capacitor C Xo=luw,C Leads v, by 90° (= 7/2 rad) -90° (= -2 rad) Ve=1X,

[nductor L X =wl Lags v, by 90° (= 72 rad) +90° (= +7/2 rad) V=14,




31.9: The Series RLC Circuit;:

i ———A 7 f___ ANAN——
£ R
it 9 |- “HQ c l’
\C.M N L
vr—

(a) (e)

This ¢ is the angle

This is in
This is ahead ". phase with /. € between / and the
o *m -
of / by 90°. RlI-—) Vi - driving emf.

1
R R~
Vi oo —— — — — / ~. -
L ¥ I \w{ﬂ - Q) .,.'f fb V R
Al ¢ 7 @t — ¢
o Vi-Ve N VN

~ V.

\Lr r
(5 ZThis is behind
/ by 90°. (@)

Fig. 31-14 (a) A phasor representing the alternating current in the driven RLC circuit at
time t. The amplitude I, the instantaneous value i, and the phase(a,t-¢) are shown.

(b) Phasors representing the voltages across the inductor, resistor, and capacitor, oriented
with respect to the current phasor in (a).

(c) A phasor representing the alternating emf that drives the current of (a).

(d) The emf phasor is equal to the vector sum of the three voltage phasors of (b).Here,
voltage phasors V, and V. have been added vectorially to yield their net phasor (V -V,).



31.9: The Series RLC Circuit;: %

€ =%€,,sn w,t

i = Isin(w;t — @)
= Vi+ (V. — Vo2 = UR? + (IX, — IXo)%

@ )

m /

[ = .
VR + (X, — X.)? /

This ¢ is the angle
between [ and the
driving emf.

=

"R

¢
\m}mdt -0

z = \/Rz + (X, — X()? (impedance defined).
€

‘m

[ = (current amplitude).
VR + (L — VawyC)
Vi — Ve IX; — IXc
t = = \
an ¢ Ve IR
tan ¢ = L (phase constant).

R




31.9: The Series RLC Circuit;:

Positive ¢ means that the & i -
current lags the emf (ELI): i ; Positive ¢
Fig. 31-15 Phasor diagrams the phasor is vertical later <\ %
) and the curve peaks later. -
and graphs of the alternating !,_
emf and current i for a / é \\
driven RLC circuit. In the I
phasor diagram of (a) and () )
the graph of (b), the current |
lags the driving emf and the ~ Negative ¢ means that the €. Newative 6
s - current leads the emf (ICE): | Nes '
current’s phase constant ¢ IS . . . I I~
.\ the phasor is vertical earlier \ €
p05|t|ve_. In (c) and (d)’ the and the curve peaks earlier. ¢,
current i leads the driving Cé ;
emf and its phase constant ¢ M %
IS negative. In (e) and ( f),
the current i is in phase with (¢) (d)
the driving emf and its . ot €, i
- ero ¢ means that the current
phase constant ¢ is zero. and emf are in phase: the It A~ Zeroo
phasors are vertical together \ 2 L
and the curves peak together. € "

m I

€
t
(e) () v &




31.9: The Series RLC Circuit, Resonance:

(]
B

VR + (0L — Vw,C)>

[

(current amplitude).

For a given resistance R, that amplitude is a maximum when the quantity (a,L -1/®,C)

In the denominator is zero. . ] I
wal. = - w,; = - (maxi I).
‘ i w0, C ‘ ; VIC maximum [)

The maximum value of | occurs when the driving angular frequency matches the natural

angular frequency—that is, at resonance. I
w; = @ =
LC

(resonance).



31.9: The Series RLC Circuit, Resonance:

Fig. 31-16 Resonance curves for the
driven RLC circuit of Fig. 31-7 with . =
100 uH, C = 100 pF, and three values of
R.The current amplitude 7 of the alter-
nating current depends on how close the
driving angular frequency wj is to the
natural angular frequency w. The hori-
zontal arrow on each curve measures
the curve’s half-width, which is the
width at the half-maximum level and is a
measure of the sharpness of the reso-
nance. To the left of w,/w = 1.00, the cir-
cuit is mainly capacitive, with X > X, ;
to the right, it is mainly inductive, with
X, > Xe.

Driving @ equal to natural @

» high current amplitude

* circuit is In resonance

» equally capacitive and inductive

» X equals X;

» current and emf in phase

* zero ¢

Current amplitude

0.90 0.95

Low driving @,

* low current amplitude
* |ICE side of the curve
* more capacitive

* Xc Is greater

* current leads emf

* negative ¢

1.00 1.05 1.10

High driving @

* low current amplitude
+ ELI side of the curve
* more inductive

* X| Is greater

* current lags emf

* positive @




31.10: Power in Alternating-Current Circuits:

The instantaneous rate at which energy is dissipated in the
resistor:
P = iR = [Isin(w,t — ¢)]*’R = I’R sin*(w,t — ).

The average rate at which energy is dissipated in the resistor,
Is the average of this over time:

I’R ( 1)2
Ppo=———=|—~|R.
w2 T \\V2

Since the root mean square of the current is given by:

Similarly, Lo = \:'5 - Pavg = 2R (average power).

: V (.
Wlth LJ;’IT[S == ‘\/j ﬂﬂd \_éI'ITlS = ﬁ (l'mS VO]tage;rms emf]
o o
Therefore, | _ = Eoms _ € rms |
Z VR4 (X, - XP

€ R
Py = — IR = Cnel s —
- avg 7 rms rms*® rms 7

Py = €imslims OS ¢ (average power), Where

Fig. 31-17 (a) A plot of sin f versus .
The average value over one cycle is zero. (b)
A plot of sin? # versus 6. The average value
over one cycle is 3.




Example, Driven RLC circuit:

A series RLC circuit, driven with €., = 120V at fre-
quency f; = 60.0 Hz, contains a resistance R = 200 (), an
inductance with inductive reactance X; = 80.0 {1, and a ca-
pacitance with capacitive reactance X = 150 ().

(a) What are the power factor cos ¢ and phase constant ¢
of the circuit?

KEY IDEA

The power factor cos ¢ can be found from the resistance R
and impedance Z via Eq.31-75 (cos ¢ = R/Z).
Calculations: To calculate Z, we use Eq. 31-61:
Z=VR+ (X, — Xc)
= \/(200 Q) + (80.0 Q — 150 Q)* = 211.90 Q.

Equation 31-75 then gives us

R 200 Q
COS ¢p = —

AT T 0.9438 = (0.944.

(Answer)

Taking the inverse cosine then yields
¢ = cos 10.944 = =19.3°.

Both +19.3% and —19.3” have a cosine of 0.944. To deter-
mine which sign is correct, we must consider whether the
current leads or lags the driving emf. Because X > X, this
circuit is mainly capacitive, with the current leading the emf.
Thus, ¢ must be negative:

¢ = —19.3°. (Answer)

(b) What is the average rate P,, at which energy is
dissipated in the resistance?

KEY IDEAS

There are two ways and two ideas to use: (1) Because the
circuit is assumed to be in steady-state operation, the rate
at which energy is dissipated in the resistance is equal to
the rate at which energy is supplied to the circuit, as given
by Eq. 31-76 (Pyy, = €rmslims €OS ¢). (2) The rate at which
energy is dissipated in a resistance R depends on the
square of the rms current [, through it, according to Eq.
31-71 (Payg = I3ns R).

€ rms
22

(120 V)?

(21190 Q)2

Pug = IinR = =R

(200 Q) = 64.1 W. (Answer)



Example, Driven RLC circuit, cont.:

A series RLC circuit, driven with €., = 120V at fre-
quency f,; = 60.0 Hz, contains a resistance R = 200 (), an
inductance with inductive reactance X; = 80.0 €1, and a ca-
pacitance with capacitive reactance X = 150 (L.

(c) What new capacitance C,,, is needed to maximize P,
if the other parameters of the circuit are not changed?

KEY IDEAS

(1) The average rate P,y, at which energy is supplied and
dissipated is maximized if the circuit is brought into reso-
nance with the driving emf. (2) Resonance occurs when
XC = XL-

Calculations: From the given data, we have X.> X|.
Thus, we must decrease X to reach resonance. From Eq.
31-39 (X = l/w,C), we see that this means we must in-
crease C to the new value C,,.

Using Eq. 31-39, we can write the resonance condition
Xe=X; as ]

W, Cnew

- XL'

Substituting 27rf, for w, (because we are given f; and not w,)
and then solving for C,,,., we find

1 1

Coow = X, = (2)(60 Hz)(80.0 Q)

=332 X 10°F = 332 uF. (Answer)



31.11: Transformers:

In electrical power distribution systems it is
desirable for reasons of safety and for efficient
equipment design to deal with relatively low
voltages at both the generating end (the electrical
power plant) and the receiving end (the home or
factory).

Nobody wants an electric toaster or a child’s
electric train to operate at, say, 10 kV.

On the other hand, in the transmission of electrical
energy from the generating plant to the consumer,
we want the lowest practical current (hence the
largest practical voltage) to minimize I°R losses
(often called ohmic losses) in the transmission line.



31.11: Transformers:

A device with which we can raise and lower the ac voltage
In a circuit, keeping the product current voltage essentially
constant, is called the transformer.

The ideal transformer consists of two coils, with different
numbers of turns, wound around an iron core.

In use, the primary winding, of N, turns, is connected to an
alternating-current generator whose emf at any time tis

givenby ¢ = sin .

Primary Secondary

Fig. 31-18 Anideal transformer (two
colils wound on an 1ron core) 1n a basic
transformer circuit. An ac generator pro-
duces current in the coil at the left (the pri-
mary). The coil at the right (the secondary)
1s connected to the resistive load R when
switch S 1s closed.

The secondary winding, of N, turns, is connected to load resistance R, but its circuit is an open

circuit as long as switch S is open.

The small sinusoidally changing primary current I, produces a sinusoidally changing

magnetic flux B in the iron core.

Because B varies, it induces an emf ( dB/dt) in each turn of the secondary. This emf per turn is

the same in the primary and the secondary. Across the primary, the voltage V, =&, N

Similarly, across the secondary the voltage is V, =&, ,,N..

P’

N,
i
- V.=V : (transformation of voltage).

’ PN

n



31.11: Transformers:

(transformation of voltage).

. . . Primary S dary
If N, >N, the device is a step-up transformer because it e eenan
. 5 . Fig. 31-18 Anideal transformer (two
SthS the primary s VOltage Vp up toa hlgher VOItage VS' colls wound on an 1ron core) 1n a basic
Sim”arly, if Ns <Np’ itisa Step-down transformer. transformer circuit. An ac generator pro-

duces current in the coil at the left (the pri-
mary). The coil at the right (the secondary)

If no energy is lost a|0n9 the way, conservation of energy 1s connected to the resistive load R when
I’eC]UiI’eS that switch S is closed.

N,
[ V =LV, ‘ [, = f — (transformation of currents).

2

I ( N

) N
‘1!,:?(‘”;)1@. — Rqu(ﬁ)R.

Here R, 1s the value of the load resistance as “seen” by the generator.

For maximum transfer of energy from an emf device to a resistive load, the resistance of the
emf device must equal the resistance of the load. For ac circuits, for the same to be true, the
impedance (rather than just the resistance) of the generator must equal that of the load.



Example, Transformer:

A transformer on a utility pole operates at V, = 8.5kV on
the primary side and supplies electrical energy to a number
of nearby houses at V, = 120 V, both quantities being rms val-
ues. Assume an ideal step-down transformer, a purely resistive
load. and a power factor of unity.

(a) What is the turns ratio N,/N of the transformer?

KEY IDEA

The turns ratio N,/N; is related to the (given) rms primary
and secondary voltages via Eq.31-79 (V; = V,N,/N,).

Calculation: We can write Eq.31-79 as

i N 31-83
V, N L

(Note that the right side of this equation is the inverse of the
turns ratio.) Inverting both sides of Eq. 31-83 gives us

N, V., 85x103V
—_r _ — 70.83 ~ 71. A
NV 120V TS,

5 hy

(b) The average rate of energy consumption (or dissipa-
tion) in the houses served by the transformer is 78 kW. What
are the rms currents in the primary and secondary of the
transformer?

Calculations: In the primary circuit, with V, = 8.5kV,
Eq.31-77 yields

P, 78 X 10° W
avg ,
= = = 0176 A =92 A.
i v, 8.5 X 10°V
(Answer)
Similarly. in the secondary circuit,
F, 78 X 103 W
_o_ave _
[, = % 120V 650 A. (Answer)

5

You can check that I = I(N,/Nj) as required by Eq. 31-80.

(c) What is the resistive load R; in the secondary circuit?
What is the corresponding resistive load R, in the primary
circuit?

V, 120V
= 1': = G0A - 0.1846 O =~ 0.18 Q. (Answer)
Similarly, for the primary circuit we find
v 8.5 X 10°V
— = — =026 Q0 =~930€. (Answer)

Y |

p

9.176 A



