Chapter 32

Maxwell's Equations;
Magnetism of Matter




32.2: Gauss’ Law for Magnetic Particles:
aR

@ The simplest magnetic structure that can exist is a magnetic dipole. Magnetic
monopoles do not exist (as far as we know).

O, = E . d;f =0 (Gauss’ law for magnetic fields).

The law asserts that the net magnetic flux @z through
any closed Gaussian surface is zero. Here B is the magnetic field.
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Fig. 32-3 If you break a magnet, each
fragment becomes a separate magnet, with
its own north and south poles.

Fig. 32-2 A bar magnetis a
magnetic dipole. The iron filings
suggest the magnetic field lines.
(Colored light fills the
background).

(© Richard Megna/Fundamental
Photographs)



32.2: Gauss’ Law for Magnetic Particles:

=]

A

O, = fﬁ B-dA=0 (Gauss’ law for magnetic fields). Surface II P

L)
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Gauss’ law for magnetic fields holds for structures
even if the Gaussian surface does not enclose the
entire structure. Gaussian surface Il near the bar
magnet of Fig. 32-4 encloses no poles, and we can
easily conclude that the net magnetic flux through it is b
Zero.

For Gaussian surface I, it may seem to enclose only
the north pole of the magnet because it encloses the

label N and not the label S. However, a south pole Fig. 32-4 The field lines for the
must be associated with the lower boundary of the magnetic field B of a short bar mag-
surface because magnetic field lines enter the surface net. The;red pueyegrepresent cross

sections of closed. three-dimensional

there. Thus, Gaussian surface | encloses a magnetic ST
saussian surfaces.

dipole, and the net flux through the surface is zero.



32.3: Induced Magnetic Fields:

. dd Here B is the magnetic field induced along a
B-ds = pyeg = (Maxwell’s law of induction).  closed loop by the changing electric flux @ in
the region encircled by that loop.

L""

The changing of the
electric field between
the plates creates a
«9  magnetic field.

Fig. 32-5 (a) A circular parallel-plate capacitor, shown in side view, is being charged by a
constant current i. (b) A view from within the capacitor, looking toward the plate at the right
in (a).The electric field is uniform, is directed into the page (toward the plate), and grows in
magnitude as the charge on the capacitor increases. The magnetic field induced by this
changing electric field is shown at four points on a circle with a radius r less than the plate
radius R.



32.3: Induced Magnetic Fields: Ampere Maxwell Law:

The induEd E direction here is opposite the
induced B direction in the preceding figure.

fﬁ B-ds = Molene  (Ampere’s law)
Here i, is the current encircled by the closed loop.

In a more complete form,

— dd
fﬁB +dS = ppgy dFE + molepe  (Ampere—Maxwell law).

When there is a current but no change in electric

flux (such as with a wire carrying a constant ‘ .

current), the first term on the right side of the second Fig. 32-6 A uniform magnetic
. i . field B in a circular region. The field,

equation is zero, and so it reduces to the first directed into the page. is increasing in

equation, Ampere’s law. magnitude. The electric field E in-
duced by the changing magnetic field
is shown at four points on a circle
concentric with the circular region.



32.4: Displacement Current:

Fig. 32-7 (a) Before and (d) aft

the plates are charged, there is no During charging, magnetic
magnetic field. (b) During the char field is created by both
magnetic field is created by both tt Before charging, there the real and fictional currents.
current and the (fictional) displace is no magnetic field. 54)
current. (¢) The same right-hand , | ; | ‘ /
works for both currents to give the ‘ ' |A ; ‘ ; Il \
tion of the magnetic field. | 11— ==
(a) . () | - = i
{
B B B

During charging, the
right-hand rule works for both
the real and fictional currents.
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After charging, there
is no magnetic field.
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Example, Magnetic Field Induced by
Changing Electric Field:

A parallel-plate capacitor with circular plates of radius R is
being charged as in Fig. 32-5a.

(a) Derive an expression for the magnetic field at radius r
for the case r = R.

- dd
%B‘d.g:,ugﬁg de

We shall separately evaluate the left and right sides of this
equation.

(32-6)

Left side of Eq. 32-6: We choose a circular Amperian loop
with a radius r = R as shown in Fig. 32-5b because we want
to evaluate the magnetic neld for r = R—that i1s, inside the
capacitor. The magnetic field B atall points along the loop is
tangent to the loop, as is the path element d5". Thus, B and
ds are either parallel or antiparallel at each point of the
loop. For simplicity, assume they are parallel (the choice
does not alter our outcome here). Then

%E-df‘=§8d50050°=3§8d5.

Due to the circular symmetry of the plates, we can also as-
sume that B has the same magnitude at every point around
the loop. Thus, B can be taken outside the integral on the right
side of the above equation. The integral that remains is ¢ ds,
which simply gives the circumference 277r of the loop. The left
side of Eq.32-61s then (B)(27r).

Right side of Eq. 32-6: We assume that the electric field
E is uniform between the capacitor plates and directed per-
pendicular to the plates. Then the electric flux ®, through
the Amperian loop is EA, where A is the area encircled by
the loop within the electric field. Thus, the right side of Eq.
32-618 ue, d(EA)/dt.

Combining results: Substituting our results for the left
and right sides into Eq. 32-6, we get

d(EA)
(B)(2r) = pogo— —-
t
Because A is a constant, we write d(EA) as A dE>so we have

dE
dt -

The area A that is encircled by the Amperian loop within the
electric field is the full area 7rr? of the loop because the loop’s
radius r is less than (or equal to) the plate radius R. Sub-
stituting 7772 for A in Eq. 32-7 leads to, for r = R,

Mo€pl dE
p = £ =
2 dt

(B)(27r) = pogoA —— (32-7)

(Answer) (32-8)



Example, Magnetic Field Induced by Changing Electric

Field, cont.:

A parallel-plate capacitor with circular plates of radius R is
being charged as in Fig. 32-5a.

Fig. 325 |.L-
(a) t,

-
1=

(a)

(b) Evaluate the field magnitude B for r = R/5 = 11.0 mm

and dE/dt = 1.50 X 102 V/m -s.

Calculation: From the answer to (a), we have

1 dE
B = ?Moé‘of”?
= %(417 X 1077T- m/A)(8.85 X 10712 C%/N - mz)
X (11.0 X 1073 m)(1.50 X 102 V/m - S)

=018 X 1078 T. (Answer)

(c) Derive an expression for the induced magnetic field for
the case r = R.

Calculation: Our procedure is the same as in (a) except we
now use an Amperian loop with a radius r that is greater than
the plate radius R, to evaluate B outside the capacitor.
Evaluating the left and right sides of Eq. 32-6 again leads to
Eq. 32-7. However, we then need this subtle point: The elec-
tric field exists only between the plates, not outside the plates.
Thus, the area A that is encircled by the Amperian loop in the
electric field is not the full area 7r? of the loop. Rather, A is
only the plate area 7R~

Substituting 7R? for A in Eq. 32-7 and solving the result
for B give us,forr = R,

‘LLDSDRZ dE

B =
2r dt

(Answer) (32-9)



32.4: Displacement Current:

— do
Eﬁ B-ds = pye TE + Wplege  (Ampere—Maxwell law).
¢

Comparing the last two terms on the right side of the above equation shows that the term
go(d®g/dt) must have the dimension of a current. This product is usually treated as being a
fictitious current called the displacement current i:

‘ fﬁ B-ds = Moldgene T HRolene (Ampere—Maxwell law),

in which iy is the displacement current that is encircled by the integration loop.

The charge g on the plates of a parallel plate capacitor at any time is related to the magnitude
E of the field between the plates at that time by ¢ = g,AE, in which A is the plate area.

dq _, dk D,  d(EA IE
‘ T:IZS{]AT' ‘ ".d:*gﬂfn,: = g (H ) = goA {H :
[t {

‘ ‘ Iy =1 (displacement current in a capacitor).

The associated magnetic field are:

(outside a circular capacitor).

" ol o | | f
B = ( — |r (inside a circular capacitor).}] AND B = Holg
i 2y




Example, Treating a Changing Electric Field as a Displacement Current:

A circular parallel-plate capacitor with plate radius R is  (b) In terms of the maximum induced magnetic field. what
being charged with a current i. is the magnitude of the magnetic field induced at r = R/5,

—» insi itor?
(a) Between the plates, what is the magnitude of ¢ B - d5'. in TSI E S ERE AT

terms of y, and i, at a radius r = R/S from their center? Calculations: At r = R/5.Eq.32-16 yields
Calfculat:ons: ]?fec.ause we met to e\.xaluate .gﬁB -ds at 5 g\ moia(RI5)  poiy 90
radius r = R/S5 (within the capacitor), the integration loop en- “\oxr2) T T 22R2 T 10mR’ (32-20)

circles only a portion i, of the total displacement current i,
Let’s assume that i, is uniformly spread over the full plate B — ( Hola )R _ _Mola (32-21)
area. Then the portion of the displacement current encircled 27R? 2@R°

by the loop is proportional to the area encircled by the loop: Dividing Eq. 32-20 by Eq. 32-21 and rearranging the result,

(encircled displacement ) we find that the field magnitude at r = R/5 is
current Zgenc _ encircled area 7r? B = 1B (Answer)
total displacement full plate area wR*
( current i, ) We should be able to obtain this result with a little rea-
. soning and less work. Equation 32-16 tells us that inside the
dLE T capacitor, B increases linearly with r. Therefore, a point £ the
. . ar? distance out to the full radius R of the plates, where B,
laenc = ld TR occurs, should have a field B that is $B,.

Substituting this into Eq. 32-18, we obtain

2
=1 . . T .
§ B dS = poig—or- (32-19)

Now substituting i; =i (from Eq. 32-15) and r = R/5 into
Eq.32-19 leads to

(ﬁ o (RIS?  pyi

B -ds = pi T (Answer)



32.5: Maxwell’s Equations:

Table 32-1

Maxwell's Equations’

Name Equation

tml

Gauss’ law for electricity dA = Genc! €0 Relates net electric flux to net enclosed electric charge

Gauss’ law for magnetism #; B-dA=0 Relates net magnetic flux to net enclosed magnetic charge
, = ddy : : : .
Faraday’s law E-ds = - " Relates induced electric field to changing magnetic flux
o ddy, , : : . :
Ampere—Maxwell law B - d5 = pyeg e + Molene Relates induced magnetic field to changing electric flux

and to current

“Written on the assumption that no dielectric or magnetic materials are present.



32.6: Magnets: The Magnetism of Earth:

For Earth, the south pole
of the dipole is actually
in the north.

R
M |--..

Geographic
north pole

B

Geomagnetic
north pole

P

A%
—

Fig. 32-8 Earth’s magnetic field
represented as a dipole field. The di-
pole axis MM makes an angle of
11.5% with Earth’s rotational axis RR.
The south pole of the dipole is

in Earth’s Northern Hemisphere.

R M

Because Earth’s magnetic field is that of a magnetic
dipole, a magnetic dipole moment u is associated with
the field.

The field declination is the angle (left or right)
between geographic north (which is toward 90°
latitude) and the horizontal component of the field.

The field inclination is the angle (up or down)
between a horizontal plane and the field’s direction.

Magnetometers measure these angles and determine the
field with much precision. One can do reasonably well
with just a compass and a dip meter.

The point where the field is perpendicular to Earth’s
surface and inward is not located at the geomagnetic
north pole off Greenland as expected; instead, this so-
called dip north pole is located in the Queen Elizabeth
Islands in northern Canada, far from Greenland.



32.7: Magnetism and Electrons: Spin Magnetic Dipole Moment:

An electron has an intrinsic angular momentum called its spin angular momentum

(or just spin), S; associated with this spin is an intrinsic spin magnetic dipole moment, g .
(By intrinsic, we mean that S and g are basic characteristics of an electron, like its mass and
electric charge.)

L = < S in which e is the elementary charge (1.60 x101° C) and m is
L the mass of an electron (9.11 103! kg).

1. Spin § itself cannot be measured. However, its component along any axis can
be measured.

2. A measured component of § iS quantized, which is a general term that means
it is restricted to certain values. A measured component of S can have only
two values, which differ only in sign.

Let us assume that the component of spin $ is measured along the z axis of a
coordinate system. Then the measured component S, can have only the two

values given by ]
1

2a

for m, = *5. (32-23)

[ ] =

S. = my

where m; is called the spin magnetic quantum number and h (= 6.63 X 10734 ] -s)
is the Planck constant, the ubiquitous constant of quantum physics.



32.7: Magnetism and Electrons: Spin Magnetic Dipole Moment:

R e =
e = ——38,
: m
For an electron, the spin
Is opposite the magnetic __ % g eh
dipole moment. Il:> sz m Z ":> sz = L PP
i

*_BD ":> eh
E’ U = =027 X 1072 J/T (Bohr magneton).
\/ dm

The orientation energy for the electron, when Bext
Is the exterior magnetic field aligned along the z-
T axis.

U= _E.w' Bext — _H.syzBe:(tn

Fig. 32-10 The spin f.spin magnetic
dipole moment g, and magnetic dipole
field B of an electron represented as a mi-

croscopic sphere.



32.7: Magnetism and Electrons: Orbital Magnetic Dipole Moment:

When it is in an atom, an electron has an additional angular momentum called
its orbital angular momentum, L, . Associated with it is an orbital magnetic
dipole moment, 4, ; the two are related by

[ —

Er:srb = _ﬂ Lorb'
Only the component along any axis of the orbital angular momentum can be measured, and
that component is quantized

h

2T
in which is m, called the orbital magnetic quantum number and “limit” refers to its largest
allowed integer value.

Lo, = my form, = 0, =1, =2,..., = (limit),

Similarly, only the component of the magnetic dipole moment of an electron along an axis
can be measured, and that component is auantized.

eh
Horb: — —Hlg = THIgUB.
darm
The orientation energy is: L =
9y U= — Morb * Bext = _H-:nrb.:«:Bext-

where the z axis is taken in the direction of B,



32.7: Magnetism and Electrons: Loop Model for Electron Orbits:

Fig. 32-11 Anelectron moving at con-
stant speed v in a circular path of radius r
that encloses an area A. The electron has an
orbital angular momentum L, and an as-
sociated orbital magnetic dipole moment
Ko A clockwise current i (of positive
charge) 1s equivalent to the counterclock-
wise circulation of the negatively charged
electron.

The magnitude of the orbital magnetic dipole moment of the
current loop shown is:

Horb — IA,
. Charge e
Here A is the area enclosed by the loop. Since  * = (ime  2m/v
[ evr
- 2=
Moo = vt 2

And since

Therefore,

L, = mrvsin90° = mrv.

g —

Morb — — 'm Lurb-

auorb



32.7: Magnetism and Electrons:
Loop Model for Electron Orbits in a Nonuniform Field:

Bext
1

| |
| |
| |
| |
| |
| |
| (b) |
| |
| |
| |
| |
| |
| |

(a) |
— d?,

dL ()

Fig. 32-12 (a) A loop model for an electron orbiting in an atom while in a nonuniform
magnetic field B,,,. (b) Charge e moves counterclockwise; the associated conventional
current i is clockwise. (c) The magnetic forces dF on the left and right sides of the loop, as
seen from the plane of the loop. The net force on the loop is upward. (d) Charge e now moves
clockwise. (e) The net force on the loop is now downward.



32.8: Magnetic

Materials:

Each electron in an atom has an orbital magnetic dipole moment and a spin magnetic dipole
moment. The resultant of these two vectors combines with similar resultants for all other
electrons in the atom, and the resultant for each atom combines with those for all the other
atoms in a sample of a material. In a magnetic material the combination of all these magnetic
dipole moments produces a magnetic field. There are three general types of magnetism.

1. Diamagnetism:

2. Paramagnetism:

3. Ferromagnetism:

In diamagnetism, weak magnetic dipole moments are produced in the
atoms of the material when the material is placed in an external magnetic
field B,,,; the combination gives the material as a whole only a feeble net
magnetic field.

Each atom of such a material has a permanent resultant magnetic dipole
moment, but the moments are randomly oriented in the material and the
material lacks a net magnetic field. An external magnetic field B, can
partially align the atomic magnetic dipole moments to give the material a
net magnetic field.

Some of the electrons in these materials have their resultant magnetic
dipole moments aligned, which produces regions with strong magnetic
dipole moments. An external field B,,, can align the magnetic
moments of such regions, producing a strong magnetic field for the
material.



32.9: Diamagnetism:

R

W/ A diamagnetic material placed in an external magnetic field B,,, develops a magnetic
dipole moment directed opposite B.y. If the field i1s nonuniform, the diamagnetic mater-
1al 1s repelled from a region of greater magnetic field rtoward a region of lesser field.

If a magnetic field is applied, the

diamagnetic material develops a

magnetic dipole moment and experiences )

a magnetic force. When the field is '
removed, both the dipole moment and the :
force disappear.

Fig. 32-13 An overhead view of a frog
that is being levitated in a magnetic field
produced by current in a vertical solenoid
below the frog. (Courtesy A. K. Gein, High
Field Magnet Laboratory, University of
Nijmegen, The Netherlands)



32.10: Paramagnetism:;

s A paramagnetic material placed in an external magnetic field B.,, develops a magnetic
dipole moment in the direction of B.,. If the field is nonuniform, the paramagnetic mate-
rial 1s attracted roward a region of greater magnetic field from a region of lesser field.

The ratio of its magnetic dipole moment to its volume V.
Is the magnetization M of the sample, and its magnitude

IS
measured magnetic moment

Vv

In 1895 Pierre Curie discovered experimentally that the
magnetization of a paramagnetic sample is directly
proportional to the magnitude of the external magnetic
field and inversely proportional to the temperature T.

B oy
M= C—,
T
is known as Curie’s law, and C is called the Curie
constant. Liquid oxygen is suspended between the

two pole faces of a magnet because the lig-
uid is paramagnetic and is magnetically at-
tracted to the magnet. (Richard
Megna/Fundamental Photographs)



32.10: Paramagnetism:;

Curie’s law is reasonable in that increasing B,,, tends to align the atomic dipole
moments in a sample and thus to increase M, whereas increasing T tends to disrupt
the alignment via thermal agitation and thus to decrease M. However, the

law is actually an approximation that is valid only when the ratio Bext/T is not

too large.

.
10 Curie's
law
= 0.75
= ® 130K
= ®2.00K
— 5
= 0.50 300K
® 421K
0.25 == Quantum theory
0
1.0 2.0 5.0 4.0
B../T(T/K)

Fig. 32-14 A magnetization curve for potassium chromium sulfate, a
paramagnetic salt. The ratio of magnetization M of the salt to the maximum
possible magnetization M, is plotted versus the ratio of the applied mag-
netic field magnitude By to the temperature 7. Curie’s law fits the data at
the left; quantum theory fits all the data. After W. E. Henry.



Example, Orientation energy of a magnetic field in a

paramagnetic gas:

A paramagnetic gas at room temperature (7= 300K) is
placed in an external uniform magnetic field of magnitude
B = 15T, the atoms of the gas have magnetic dipole mo-
ment y = 1.0ug. Calculate the mean translational Kinetic en-
ergy K of an atom of the gas and the energy difference AUy
between parallel alignment and antiparallel alignment of the
atom’s magnetic dipole moment with the external field.

KEY IDEAS

(1) The mean translational Kinetic energy K of an atom in a
gas depends on the temperature of the gas. (2) The energy Uy
of a magnetic dipole & in an external magnetic field B de-
pends on the angle #between the directions of w and B.

Calculations: From Eq. 19-24, we have
K =3kT =3(1.38 X 1072 J/K)(300 K)

=62 X 1072] =0.039eV. (Answer)

From Eq.28-38 (Uy = —u - B ). we can write the difference
AUy between parallel alignment (6 = 0°) and antiparallel
alignment (6 = 180°) as

AUz = —uB cos 180° — (—uB cos 0°) = 2uB
=2upB =2(9.27 X 1072 J/T)(1.5T)

=28 X 1072 ] = 0.000 17 eV. (Answer)

Here K is about 230 times AUp; so energy exchanges among the
atoms during their collisions with one another can easily reorient
any magnetic dipole moments that might be aligned with the ex-
ternal magnetic field. That is, as soon as a magnetic dipole mo-
ment happens to become aligned with the external field, in the di-
pole’s low energy state, chances are very good that a neighboring
atom will hit the atom, transferring enough energy to put the di-
pole in a higher energy state. Thus, the magnetic dipole moment
exhibited by the paramagnetic gas must be due to fleeting partial
alignments of the atomic dipole moments.



32.11: Ferromagnetism:

R

- - - - o
W A ferromagnetic material placed in an external magnetic field B.y, develops a strong mag-
- - - - - — - - - -
netic dipole moment in the direction of B, ,. If the field is nonuniform, the ferromagnetic
material 1s attracted foward a region of greater magnetic field from a region of lesser field.

In ferromagnetic materials a quantum physical effect called exchange coupling is
present where the electron spins of one atom interact with those of neighboring

atoms.

The result is alignment of the magnetic dipole moments of the atoms, in spite of
the randomizing tendency of atomic collisions due to thermal agitation. This
persistent alignment is what gives ferromagnetic materials their permanent
magnetism.

If the temperature of a ferromagnetic material is raised above a certain critical
value, called the Curie temperature, the exchange coupling ceases to be effective.
Most such materials then become simply paramagnetic.



32.11: Ferromagnetism:

The magnetization of a ferromagnetic material such
as iron can be studied with an arrangement called a
Rowland ring (Fig. 32-15).

The material is formed into a thin toroidal core of
circular cross section. A primary coil P having n
turns per unit length is wrapped around the core
and carries current ip. If the iron core were not
present, the magnitude of the magnetic field inside
the coil would be

BU = Ju,{]f]:lﬂ.

With the iron core present, the magnetic field inside
the coil is greater than B, usually by a large

amount.
B — B{] + B].w_

Here B,, is the magnitude of the magnetic field
contributed by the iron core.

Iron core -, p
\! L
- { ) . ".g

Fig. 32-15 A Rowland ring. A primary
coil P has a core made of the ferromagnetic
material to be studied (here iron). The core
is magnetized by a current ip sent through
coil P. (The turns of the coil are represented
by dots.) The extent to which the core is
magnetized determines the total magnetic
field B within coil P. Field B can be mea-
sured by means of a secondary coil S.



32.11: Ferromagnetism:

1.0
0.8

0.6

‘Bﬁ'lr’f»"}r BM',In:m

0.4
0.2

0 2 4 6 8 10 12 14
By (107'T)
Fig. 32-16 A magnetization curve for a
ferromagnetic core material in the
Rowland ring of Fig. 32-15. On the vertical
axis, 1.0 corresponds to complete align-

ment (saturation) of the atomic dipoles
within the material.

The ratio By/By; nax Where By, may 1S the
maximum possible value of B,,,
corresponding to saturation, is plotted
versus B,,.

The curve is like the magnetization curve
for a paramagnetic substance: Both curves
show the extent to which an applied
magnetic field can align the atomic dipole
moments of a material.

For the ferromagnetic core yielding Fig. 32-
16, the alignment of the dipole moments is
about 70% complete for B, ~1 x 103 T.

If B, were increased to 1 T, the alignment
would be almost complete (but B, =1 T,
and thus almost complete saturation, is quite
difficult to obtain).



32.11: Ferromagnetism: Magnetic Domains

Fig. 32-17 A photograph of
domain patterns within a single erys-
tal of nickel; white lines reveal the
boundaries of the domains. The
white arrows superimposed on the
photograph show the orientations of
the magnetic dipoles within the do-
mains and thus the orientations of
the net magnetic dipoles of the do-
mains. The crystal as a whole 1s un-
magnetized if the net magnetic field
(the vector sum over all the domains)
1s zero. (Courtesy Ralph W. DeBlois)




32.11: Ferromagnetism: Hyteresis

Magnetization curves for ferromagnetic materials are
not retraced as we increase and then decrease the

external magnetic field B,,. P b
C
Figure 32-18 is a plot of B,, versus B, during the
following operations with a Rowland ring:
“ By
|.Starting with the iron unmagnetized (point a),
increase the current in the toroid until B, (=zin) has
the value corresponding to point b; ¢
I1.reduce the current in the toroid winding (and thus d
B,) back to zero (point c); Fig. 32-18 A magnetization curve
I11.reverse the toroid current and increase it in (ab) for a ferromagnetic specimen and

magnitude until B, has the value corresponding to ~ an associated hysteresis loop (bcdeb).
point d;

IV.reduce the current to zero again (point e);

V.reverse the current once more until point b is

reached again.

The lack of retraceability shown in Fig. 32-18 is called hysteresis, and the curve bcdeb is
called a hysteresis loop.



Example, Magnetic Dipole Moment in a Compass Needle:

A compass needle made of pure iron (density 7900 kg/m?)
has a length L of 3.0 cm, a width of 1.0 mm, and a thickness
of 0.50 mm. The magnitude of the magnetic dipole moment
of an iron atom is pup, = 2.1 X 1072 J/T. If the magnetiza-
tion of the needle is equivalent to the alignment of 10% of the
atoms in the needle, what is the magnitude of the needle’s
magnetic dipole moment x?

KEY IDEAS

(1) Alignment of all N atoms in the needle would give a magni-
tude of Nup for the needle’s magnetic dipole moment .
However, the needle has only 10% alignment (the random ori-
entation of the rest does not give any net contribution to ).

Thus, 1t = 0.10Nug,. (32-42)

(2) We can find the number of atoms N in the needle from
the needle’s mass:
needle’s mass

N = (32-43)

iron’s atomic mass

Finding N: Iron’s atomic mass is not listed in Appendix F
but its molar mass M is. Thus, we write

iron’s molar mass M
Avogadro’s number N, -

iron’s atomic mass = (32-44)

Next, we can rewrite Eq. 32-43 in terms of the needle’s mass
m, the molar mass M, and Avogadro’s number N4:

MmNy

N = :
M

(32-45)

The needle’s mass m is the product of its density and its
volume. The volume works out to be 1.5 X 1078 m?; so

needle’s mass m = (needle’s density)(needle’s volume)
= (7900 kg/m?)(1.5 X 1078 m?)
= 1.185 X 10 *kg.

Substituting into Eq. 32-45 with this value for m, and also
55.847 g/mol (= 0.055 847 kg/mol) for M and 6.02 X 10% for
N . we find

~ (1185 X 107*kg)(6.02 X 10%)

a 0.055 847 kg/mol

= 1.2774 X 10%L.

N

Finding p: Substituting our value of N and the value of ug.
into Eq. 32-42 then yields
w = (0.10)(1.2774 X 10*)(2.1 X 1072 J/T)

=2.682 X 1073J/T =27 X 107 I/T. (Answer)



