Chapter 32

Ionizing Radiation, Nuclear Energy, and Elementary Particles

32.1 Biological Effects of Ionizing Radiation

lonizing radiation consists of photons and/or moving particles that have sufficient energy to knock and electron out of an atom or molecule, thus forming an ion.

Exposure is a measure of the ionizing radiation produced in air by X-rays or γ -rays.

In passing through the air, the beam produces positive ions whose total charge is *q*. Exposure is the charge per unit mass of the air.

Exposure (in roentgens) =
$$\left(\frac{1}{2.58 \times 10^{-4}}\right) \frac{q}{m}$$

For biological purposes, the **absorbed dose** is a more suitable quantity because it is the energy absorbed from the radiation per unit mass of the absorbing material:

 $1 \operatorname{rad} = 0.01 \operatorname{gray}$

32.1 Biological Effects of Ionizing Radiation

To compare the damage produced by different types of radiation, the *relative biological effectiveness* (RBE) is used.

RBE =	Dose of 200 - keV X - rays that
	pruduces a certain biological effect
	Dose of radiation that produces
	the same biological effect

Table 32.1 Relative Biological Effectiveness (RBE) for Various Types of Radiation

Type of Radiation	RBE	
200-keV X-rays	1	
γ rays	1	
β^{-} particles (electrons)	1	
Protons	10	
α particles	10-20	
Neutrons		
Slow	2	
Fast	10	

32.1 Biological Effects of Ionizing Radiation

The product of the absorbed dose and the RBE is the *biologically* equivalent dose:

Equivalent Doses of Radiation Received by a U. S. Resident ^a			
Source of Radiation	Biologically Equivalent Dose (mrem/yr) ^b		
Natural background radiation			
Cosmic rays	28		
Radioactive earth and air	28		
Internal radio- active nuclei	39		
Inhaled radon	≈200		
Man-made radiation			
Consumer products	10		
Medical/dental diagnostics	39		
Nuclear medicine	14		
Rounded to	otal: 360		

Table 32.2 Average Biologically

Biological ly equivalent dose = Absorbed dose × RBE

^a National Council on Radiation Protection and Measurements, Report No. 93, "Ionizing Radiation Exposure of the Population of the United States," 1987.
^b 1 mrem = 10⁻³ rem. A *nuclear reaction* is said to occur whenever the incident nucleus, particle, or photon causes a change to occur in the target nucleus.

Nuclear Reaction	Notation	
$_{0}^{1}n + _{5}^{10}B \rightarrow _{3}^{7}Li + _{2}^{4}He$	${}^{10}_{5}{ m B}(n, \alpha) {}^{7}_{3}{ m Li}$	
$\gamma + \frac{25}{12}Mg \rightarrow \frac{24}{11}Na + \frac{1}{1}H$	$^{25}_{12}$ Mg (γ, p) $^{24}_{11}$ Na	
$^{1}_{1}H + {}^{13}_{6}C \rightarrow {}^{14}_{7}N + \gamma$	${}^{13}_{6}{ m C}(p,\gamma){}^{14}_{7}{ m N}$	

32.2 Induced Nuclear Reactions

Example 3 An Induced Nuclear Transmutation

An alpha particle strikes an aluminum nucleus. As a result, an unknown nucleus and a neutron are produced.

$${}^{4}_{2}\text{He} + {}^{27}_{13}\text{D} \rightarrow {}^{A}_{Z}X + {}^{1}_{0}n$$

Conserved Quantity	Before Reaction	After Reaction	
Total electric charge (number of protons)	2 + 13 =	Z + 0	
Total number of nucleons	4 + 27 =	A + 1	

 ${}^{30}_{15}P$

32.2 Induced Nuclear Reactions

An induced nuclear reaction in which uranium is transmuted into plutonium.

32.3 Nuclear Fission

A slowly moving neutron causes the uranium nucleus to fission into barium, krypton, and three neutrons.

Conceptual Example 5 Thermal Neutrons Versus Thermal Protons or Alpha Particles

Why is it possible for a thermal neutron to penetrate a nucleus, whereas a proton or alpha particle would need a much larger amount of energy?

32.3 Nuclear Fission

A chain reaction

32.3 Nuclear Fission

In a controlled chain reaction, only one neutron, on average, causes another neutron to fission.

32.4 Nuclear Reactors

A nuclear reactor consists of fuel elements, control rods, and a moderator.

32.4 Nuclear Reactors

The moderator slows neutrons and the control rods absorb neutrons.

32.5 Nuclear Fusion

Two nuclei of very low mass can combine to generate energy. This process is called *nuclear fusion*.

32.5 Nuclear Fusion

Family	Particle	Particle Symbol	Antiparticle Symbol	Rest Energy (MeV)	Lifetime (s)
Photon	Photon	γ	Self ^a	0	Stable
Lepton	Electron	e^- or β^-	e^+ or β^+	0.511	Stable
	Muon	μ^{-}	μ^+	105.7	$2.2 imes 10^{-6}$
	Tau	$ au^-$	$ au^+$	1777	$2.9 imes 10^{-13}$
	Electron neutrino	$\nu_{\rm e}$	$\overline{\nu}_c$	$<3 imes 10^{-6}$	Stable
	Muon neutrino	$ u_{\mu}$	$\overline{ u}_{\mu}$	< 0.19	Stable
	Tau neutrino	ν_{τ}	$\overline{\nu}_{\tau}$	<18.2	Stable
Hadron					
Mesons					
	Pion	π^+	π^-	139.6	$2.6 imes 10^{-8}$
		π^0	Self ^a	135.0	$8.4 imes 10^{-17}$
	Kaon	K^+	K -	493.7	1.2×10^{-8}
		$K_{\rm S}^{0}$	\overline{K}_{S}^{0}	497.7	$8.9 imes 10^{-11}$
		K ⁰ _L	\overline{K}^0_L	497.7	5.2×10^{-8}
	Eta	η^0	Self ^a	547.3	$< 10^{-18}$
Baryons					
	Proton	p	\overline{p}	938.3	Stable
	Neutron	n	\overline{n}	939.6	886
	Lambda	Λ^0	$\overline{\Lambda}{}^{0}$	1116	$2.6 imes 10^{-10}$
	Sigma	Σ^+	$\overline{\Sigma}^{-}$	1189	$8.0 imes 10^{-11}$
		Σ^0	$\overline{\Sigma}^{0}$	1193	$7.4 imes 10^{-20}$
		Σ-	$\overline{\Sigma}^+$	1197	$1.5 imes 10^{-10}$
	Omega	Ω^{-}	Ω^+	1672	8.2×10^{-11}

Table 32.3 Some Particles and Their Properties

^a The particle is its own antiparticle.

Pion production through p-p collision.

Antiparticles, like positrons, can be used in positron emission tomography, or PET scans.

(*b*)

Mesons consist of a quark-antiquark pair, while baryons consist of three quarks.

The current view of how matter is composed of basic units.

32.7 Cosmology

$$H = 0.022 \frac{\text{m}}{\text{s} \cdot \text{light - year}}$$

32.7 Cosmology

